论文总字数:32601字
摘 要
在GNSS载波精密定位的过程中,利用模糊度的整数特性来提高定位解的精度是一个极为重要的步骤,也是近年来国内外学者研究的热点。传统的模糊度解算方法都是尝试将其固定为一个整数,这个过程需要较长的初始化时间,在此期间只能采用模糊度实数解。针对这个问题,有学者提出了利用所有整数向量来估计模糊度的算法,只需几个历元即可得到模糊度整数特性约束下的定位解。基于这一算法,本文对其精度性能展开了研究,主要内容如下:
(1)阐述了GNSS载波精密定位的基本原理和数据处理流程。主要以精密单点定位和载波相对定位为例,推导了相应的观测方程和误差模型,介绍了模糊度实数解等参数的解算过程。
(2)比较了常规模糊度固定方法与整数浮点解算法。首先概述了三种常用的整数解候选值确定方法,即直接取整法、序贯取整法和整数最小二乘法,其次比较了一些整数解确认的方法,例如早期的区别性检验方法、基于固定失败率的整数孔径估计和后验概率法,最后详细介绍了整数浮点解的算法。
(3)分析了整数浮点解的精度表现和对系统误差的识别能力。利用一个实测算例比较了整数浮点解和实数解的精度,得到了结论:整数浮点解的精度优于实数解;设计了一个仿真实验来分析整数浮点解的系统误差识别能力,定性地得出了结论:对应某个特定的实数解方差矩阵,整数浮点解的系统误差识别能力存在着一个特定的界限,整数浮点解具有一个特定的工作孔径。
关键词:GNSS;载波相位定位;整周模糊度;整数浮点解
ABSTRACT
In the process of GNSS carrier precise positioning, it is a important step to improve the accuracy of positioning solution by using the integer characteristics of ambiguity, which is also a research hotspot of domestic and foreign scholars in recent years. It is of great theoretical meaning and practical value to study the ambiguity resolution method. Traditional ambiguity resolution methods try to fix it as an integer, which takes a long time, during which only real ambiguity solution can be used. To solve this problem, some scholars have proposed an algorithm to estimate ambiguity using all integer vectors, which can be implemented in only a few epochs. Based on this algorithm, the accuracy performance of the algorithm is studied in this paper. The main contents are as follows:
(1)The basic principle and data processing flow of GNSS carrier precise positioning are described. Taking precise point positioning and carrier relative positioning as examples, the corresponding observation equations and error models are deduced, the process of ambiguity real number solution and other parameters calculation is introduced.
(2)The conventional ambiguity fixing method and Reliable Integer Float Estimation algorithm are compared. Firstly, three commonly used methods for determining candidate values of integer solutions are summarized, namely direct integer method, sequential integer method and integer least squares method. Secondly, some methods for identifying integer solutions are compared, such as early discrimination test method, integer aperture estimation based on fixed failure rate and posterior probability method. Finally, the algorithm of Reliable Integer Float Estimation(RIFT) is introduced in detail.
(3)The accuracy performance of RIFT and the ability to identify system errors are analyzed. A practical example is used to compare the accuracy of RIFT solution with that of real solution, and the conclusion is drawn that the accuracy of RIFT solution is better than that of real solution. A simulation experiment is designed to analyze the system error identification ability of RIFT and the simulation conclusion is qualitatively drawn: corresponding to a specific real solution variance matrix, the system error identification ability of RIFT solution has a specific bound, and RIFT solution has a specific working aperture.
Keywords: GNSS; carrier phase positioning; ambiguity; Reliable Integer Float Estimation
目 录
摘要I
ABSTRACTII
第一章 绪论1
1.1选题背景和意义1
1.2研究现状1
1.3本文的主要内容2
第二章 GNSS载波精密定位的基本原理4
2.1 GPS定位的基本原理4
2.2载波相位测量4
2.2.1观测值4
2.2.2观测方程及线性化5
2.3精密单点定位9
2.3.1观测值组合形式9
2.3.2组合观测方程9
2.3.3定位解算11
2.4相对定位12
2.4.1观测值的线性组合12
2.4.2基线解算13
2.5本章小结14
第三章 定位整数解实现方法15
3.1整数解确定常规步骤15
3.2模糊度候选值确定16
3.2.1直接取整法16
3.2.2序贯取整法16
3.2.3整数最小二乘17
3.2.4三种整数确定方法的比较18
3.3模糊度确认方法19
3.3.1区别性检验19
3.3.2基于固定失败率的整数孔径估计22
3.3.3后验概率法23
3.4整数浮点解24
3.4.1整数浮点解的理论算法24
3.4.2整数浮点解的实际算法及其方差矩阵25
3.4.3有限个整数向量的确定26
3.4.4整数浮点解的确认26
3.5本章小结26
第四章 整数浮点解精度性能分析28
4.1整数浮点解精度分析28
4.1.1计算流程28
4.1.2真误差的比较30
4.1.3标准差的比较31
4.2 系统误差识别性能分析32
4.2.1仿真策略32
4.2.2实验过程33
4.2.3实验结果35
4.2.4结论分析39
4.3本章小结40
第五章 结论与展望41
5.1结论41
5.2展望41
参考文献43
致谢45
第一章 绪论
1.1选题背景和意义
剩余内容已隐藏,请支付后下载全文,论文总字数:32601字
该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;