基于RF MEMS柔性器件力学特性的预匹配仿真设计

 2022-05-21 22:19:51

论文总字数:30439字

摘 要

柔性电子器件作为新一代半导体器件的热门发展方向,是将有机/无机材料电子器件制作在柔性或可延性基板上。相对于传统电子器件,柔性电子器件具有更大的灵活性。柔性电子器件因为在保形、小型化、轻量化、智能化等方面无可比拟的优势,在信息、医疗、能源、国防等领域都具有非常广阔的发展前景。其中,RF MEMS(射频微机电系统)柔性器件作为柔性电子器件的重要分支,因为线性度高、损耗低等优点,在机载/星载雷达和物联网通信系统中具有广泛应用前景。

本文首先对RF MEMS开关的原理、特点及其研究现状进行了调研,并在此基础上展开了以下研究工作:

(1)分别给出了双端固支梁和悬臂梁的梁桥等效弹簧系数的计算方法,并介绍了双端固支梁结构和悬臂梁结构的RF MEMS开关的静电驱动原理以及各自的吸合电压计算公式。在此基础上,分别建立了双端固支梁和悬臂梁结构RF MEMS开关的力学弯曲特性模型,分析了衬底弯曲对两种结构开关吸合电压带来的影响,并给出了衬底弯曲条件下的开关吸合电压公式。

(2)借助ANSYS有限元分析软件,构建了静电驱动双端固支梁和悬臂梁结构MEMS开关在衬底平直和衬底弯曲条件下的模型,并利用有限元分析,仿真得到不同开关在衬底平直或者衬底不同曲率下的吸合电压大小。

(3)根据两种结构RF MEMS开关力学特性模型,调整影响开关吸合电压的主要参数,对RF MEMS开关进行预匹配仿真设计。本文通过预匹配设计,得到了衬底平直时吸合电压为30V的平直梁式、挖孔式和弹簧梁式的双端固支梁和悬臂梁开关,并进一步仿真得到所设计开关在衬底不同曲率半径下的吸合电压大小。

关键词:RF MEMS开关,弯曲特性模型,力学特性,吸合电压,预匹配仿真设计

Abstract

As a hot development trend of next-generation semiconductor devices, flexible electronic devices are electronic devices that are made of organic/inorganic material and made on flexible or ductile substrates. Flexible electronic devices have greater flexibility than traditional electronic devices. Because of its unparalleled advantages in conformal, miniaturization, lightweight, and intelligent, flexible electronic devices have very broad development prospects in the fields of information, medical care, energy, and national defense. Among them, RF MEMS (RF Micro Electro Mechanical Systems) flexible devices, as an important branch of flexible electronic devices, have broad application prospects in airborne/spaceborne radar and IoT communication systems because of their high linearity and low loss.

This paper firstly investigates the principle, characteristics and research status of RF MEMS switches, and on the basis of this, the following research work is carried out:

(1) The calculation method of the equivalent spring coefficient of the beam bridge of the clamped–clamped beam and the cantilever beam is given respectively, and the electrostatic driving principle of the RF MEMS switch of the clamped–clamped beam structure and the cantilever beam structure and their respective Pull-in voltage calculation formula. On this basis, the mechanical bending characteristics of the clamped–clamped beam and cantilever beam structure RF MEMS switches are established respectively. The influence of substrate bending on the pull-in voltage of the two structure switches is analyzed, and the formula for the switch pull-in voltage under bending conditions is given.

(2) With ANSYS finite element analysis software, the model of electrostatically driven clamped–clamped beam and cantilever beam structure MEMS switch under the condition of substrate straightness and substrate bending is constructed, and different switches are simulated by finite element analysis,under the condition of substrate straightness and substrate bending

(3) According to the two structural RF MEMS switch mechanical characteristics model, the main parameters affecting the switch pull-in voltage are adjusted, and the RF MEMS switch is pre-matching simulation designed. In this paper, through the pre-matching design, the straight beam type, the digging hole type and the spring beam type clamped–clamped beam and the cantilever beam switches obtain pull-in voltage of 30V when the substrate is straight. And the designed switch is further simulated to get the pull-in voltage at different radii of curvature of the substrate.

KEY WORDS: RF MEMS switch, bending characteristics model, mechanical properties, pull-in voltage, Pre-matching simulation design

目录

摘要 I

Abstract II

第一章 绪论 3

1.1 柔性电子器件 3

1.1.1 柔性电子器件的定义与特点 3

1.1.2 柔性电子器件的应用 3

1.2 RF MEMS(射频微电子机械系统) 4

1.2.1 RF MEMS的定义 4

1.2.2 RF MEMS各技术层面 4

1.3 RF MEMS开关 5

1.3.1 RF MEMS开关的特点 5

1.3.2 RF MEMS开关的分类 5

1.3.3 RF MEMS开关的研究现状 6

1.4 MEMS柔性电子器件 6

1.4.1 MEMS柔性电子器件的三条研究主线 6

1.4.2 MEMS柔性电子器件的代表性进展 6

1.5 本文主要工作 9

第二章 典型RF MEMS膜/桥结构弯曲特性建模 11

2.1 静电驱动双端固支梁弯曲特性模型 11

2.1.1 双端固支梁弹簧系数 11

2.1.2 弹簧梁式双端固支梁弹簧系数 14

2.1.3 静电驱动双端固支梁吸合电压 16

2.1.4 静电驱动双端固支梁弯曲特性 17

2.2 静电驱动悬臂梁弯曲特性模型 19

2.2.1 静电驱动悬臂梁吸合电压 19

2.2.2 静电驱动悬臂梁弯曲特性 20

2.3 本章小结 21

第三章 静电驱动RF MEMS开关的设计与仿真 21

3.1 仿真软件简介 21

3.2 静电驱动双端固支梁结构的设计与仿真 23

3.2.1 三种结构双端固支梁三维模型 23

3.2.2 双端固支梁仿真结果及分析 26

3.2.3 双端固支梁预匹配仿真设计 28

3.3 静电驱动悬臂梁结构的设计与仿真 30

3.3.1 三种结构悬臂梁三维模型 30

3.3.2 悬臂梁仿真结果及分析 32

3.3.3 悬臂梁预匹配仿真设计 33

3.4 本章小结 34

第四章 总结与展望 36

4.1 论文总结 36

4.2 课题展望 36

参考文献 37

绪论

微电子机械系统(Micro-Electro-Mechanical System,又叫做微机电系统,是当前半导体器件主要方向之一。MEMS是在微电子技术的基础上发展起来的,融合了光刻、薄膜、LIGA、腐蚀、硅微加工和非硅微加工等技术,具有微型化、智能化、高集成度和适于大批量生产等优势。在许多领域具有着广泛的应用前景,主要代表器件有MEMS陀螺仪、压力传感器、MEMS加速度计等。

二十一世纪以来,医疗健康监护系统、汽车电子的发展、智能手机的不断更新等等,这些领域的高速进步既离不开MEMS技术的成熟,又会反过来催动MEMS技术的快速发展,例如近些年手机行业兴起的曲面屏技术等,都给MEMS技术带来了新的挑战和新的发展契机。

剩余内容已隐藏,请支付后下载全文,论文总字数:30439字

您需要先支付 80元 才能查看全部内容!立即支付

该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;