论文总字数:30988字
摘 要
对于电力系统来说,合理的无功功率分布能够降低系统网络损耗,提高电网电压质量,从而保证系统安全、高效、可靠、稳定的运行。除此之外,随着风力发电在电力系统中的逐渐普及,对含风电场的电力系统进行无功功率补偿和优化的研究具有重要的理论和实践价值。
电力系统的无功优化问题是一个多约束条件,多变量的非线性优化问题。本文通过控制发电机节点的无功出力和在电力系统中电压薄弱点投入电容器组来优化电网中的无功功率分布,以达到降低系统有功网损的目的。对于风电场自身来说,风电具有随机性,故本文采用场景分析法,建立风力发电的三种典型的出力场景,减少了计算工作量。
本文选用内点法来进行求解含风电场的电力系统无功优化。本文建立了含有风电场的电力系统的无功优化模型,采用MATLAB软件进行编程验算,并基于IEEE30节点系统进行了算例验证和分析,结果显示有功网损值化的无功优化模型能够有效降低系统网损。除此之外,为了验证算法的有效性,本文修改了算例参数,考察了在改变风速-风电出力函数关系和模拟风速分布的Weibull分布函数相关参数的情况下,本文优化算法的有效性,以及参数改变对优化问题的影响。进一步,调整无功优化的目标函数的算例分析表明了无功优化算法具有一定的普适性。
关键词:无功优化;风电场;风电出力场景;最优化方法;内点法
Abstract
For the whole power system, a reasonable distribution of reactive power could decrease the net loss of the power system, as well as increase the voltage quality of the system. Therefore, it can protect the power system and provide an outstanding environment for the safe, efficient, reliable and stable running of the power system.
In addition, as the wind generation is becoming more and more popular in the power system, it is of great value both in theory and practice to make research in the compensation and optimization inside the power system with wind generation.
The optimization of the power system’s reactive power is an nonlinear issue with several constraint conditions and several variables. This paper makes the optimization of the reactive power inside the power system by the way of controlling the reactive power generation in different generators’ nodes, as well as adding capacitor banks into many voltage-weak-point of the power system, and then, the active power net loss of the power system can be reduced.
For the wind farm itself, the electricity generation of the wind turbine is random and is hard to predict precisely. Therefore, this paper uses Scene Analysis Method (SAM) to analyze the issue. By creating three typical generation scenes of the wind electricity generation, we can reduce a large amount of calculation.
This paper uses Interior Point Method (IPM) to make calculation of the reactive power optimization inside the power system with wind electricity generation. The paper also constructs an optimization model of the reactive power for the power system with wind electricity generation, and it also makes the use of the programming function of the MATLAB to test and verify the example. As far as the example, the paper uses the typical IEEE’s 30-bus example, and the final result proves that the optimization model of reactive power for the active power net loss can efficiently decrease the power system net loss. In order to verify the efficiency of the arithmetic, the paper makes change to the parameters of the arithmetic. Based on the wind-changed-generation formula and simulated-wind-speed-distribution Weibull formula, the paper tests and verifies the efficiency of the arithmetic and the influence of the optimization by changing the parameters. In addition, the analysis of changing the objective function of the optimization example of the reactive power turns out that the arithmetic of the reactive power optimization has some certain universality.
KEY WORDS: optimization of reactive power; wind farms; scenes of wind generation; the best method of optimization; Interior Point Method
目录
摘要.................................................................................................................................................I
Abstract...........................................................................................................................................II
第一章 绪论 1
1.1 引言 1
1.2 研究的目的和意义 1
1.3 无功优化概述 2
1.4 无功优化策略的研究方向 2
1.4.1 传统无功优化算法 3
1.4.2 无功优化智能算法 4
1.5 本课题的主要研究内容 4
第二章 含风电场电力系统的无功功率补偿建模与潮流计算 6
2.1 无功功率补偿原理 6
2.2 无功功率补偿的作用 6
2.3 无功补偿装置存在的问题 6
2.2 无功控制设备 7
2.2.1 发电机 7
2.2.2 并联电容器 7
2.3.3 静止补偿器 7
2.3 无功补偿策略数学模型 8
2.3.1 三种典型风电-出力场景的建立 8
2.3.2 潮流计算等式约束 9
2.3.3 不等式变量约束条件 9
2.3.4 目标函数 10
2.4 潮流计算及算例分析 10
2.4.1 IEEE30节点系统潮流计算结果 12
2.5 本章小结 13
3.1 含风电场电力系统无功补偿的优化算法 14
3.2含风电场电力系统无功优化模型的参数变化 14
3.2.1 Weibull分布函数参数变化 14
3.2.2 风速-出力函数关系形式 16
3.2.3无功优化目标函数 16
3.3 算例验证分析 17
3.3.1 IEEE 30节点系统算例及结果分析 17
3.3.2 改变发电机输出功率模型的算例分析 20
3.3.3 改变Weibull分布函数参数的算例分析 24
3.3.4 改变目标函数的算例分析 28
致谢 32
参考文献 33
附录A IEEE30节点系统数据 35
第一章 绪论
1.1 引言
剩余内容已隐藏,请支付后下载全文,论文总字数:30988字
该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;