论文总字数:33714字
摘 要
飞轮储能系统具有使用寿命较长、无污染、充放电无限制次数及功率密度较高等特点。目前,飞轮储能系统被地广泛利用在航天领域。航天飞轮电机的工作环境极为特殊,需要考虑真空,微重力,温差大等因素的影响,因此飞轮电机的散热性能是优化电机中一个重要的部分。从热源上来说,减小损耗可以优化电机得散热性能。
本文根据飞轮储能系统中航天飞轮储能电机的运行环境和设计指标对航天飞轮电机的转子涡流损耗、绕组铜损和绕组涡流损耗计算展开研究。
无铁心无刷直流电机的损耗主要包含两个部分,一部分是转子上的涡流损耗,另一部分是定子绕组铜耗。针对转子涡流损耗,分析了磁极间隔、磁极厚度、磁极分块、槽口宽度等因素对转子涡流损耗的影响。建立了飞轮储能电机的二维有限元模型,改变变量,对不同模型进行仿真,分析结果得出结论。研究结果表明,在航天飞轮电机中,随着槽口宽度的增大,涡流损耗先减後增;磁极分块块数对涡流损耗影响较小,随着分块块数增加涡流损耗递增;磁极厚度对涡流损耗有较大的影响,涡流损耗随磁极厚度增大而增大,过7.8mm后开始减小;磁极间隔对涡流损耗影响较小。
针对定子绕组上的铜损和涡流损耗,在不同电流频率和电机转速下对这两种损耗进行了仿真并分析。结果表明,电流频率对绕组铜损影响很小;电流频率为2000Hz时绕组涡流损耗最小;储能状态下电机转速对绕组铜损的影响不大;释能状态下随着电机转速增大铜损增大;储能和释能两种运行状态下,绕组上的涡流损耗都随着电机转速的增大不断增大,但是释能状态下的涡流损耗变化幅度也在不断增大。
关键词:航天飞轮电机,涡流损耗,绕组损耗。
Abstract
The flywheel energy storage system has the advantages of longer service life, no pollution, no limited number of charge and discharge times, and high power density. The current flywheel energy storage system is widely used in the aerospace field. The working environment of the space flywheel motor is extremely special. It needs to consider the effects of vacuum, microgravity, and large temperature difference. Therefore, the heat dissipation performance of the flywheel motor is an important part of optimizing the motor. From the heat source, reducing the loss can optimize the thermal performance of the motor.
Based on the operating environment and design specifications of the space flywheel energy storage motor in the flywheel energy storage system, this paper studies the rotor eddy current loss, winding copper loss and winding eddy current loss calculation of the space flywheel motor.
The loss of the coreless brushless DC motor mainly includes the eddy current loss of the rotor and the copper loss of the stator winding. According to the eddy current loss of the rotor, the effects of the magnetic pole spacing, magnetic pole thickness (air gap length), magnetic pole block, slot width and other factors on the eddy current loss of the rotor were analyzed. A two-dimensional finite element model of the flywheel motor was established, variables were changed, and the results were simulated for different models.
For the stator winding copper loss and eddy current loss, the winding copper loss was simulated and analyzed at different current frequencies and motor speeds. The research results show that in the spaceflight motor, the eddy current loss decreases first and then increases with the increase of the slot width; the number of magnetic pole blocks has little effect on the eddy current loss, and the eddy current loss increases as the number of blocks increases; the magnetic pole thickness increases. The eddy current loss has a great influence on the eddy current loss. The eddy current loss tends to increase with the increase of the magnetic pole thickness. After 7.8 mm, the eddy current loss begins to decrease. The magnetic pole gap has little effect on the eddy current loss. In terms of windings, the effects of motor speed and current frequency on winding losses have been investigated. The results show that the current frequency has little effect on winding copper loss; when the current frequency is 2000Hz, the eddy current loss of the winding is minimum; the effect of the motor speed on the copper loss of the winding under the state of energy storage is not significant; the copper loss increases with the increase of the motor speed in the energy releasing state. Under both conditions, the eddy current loss on the winding increases with the increase of the motor speed, but the magnitude of the eddy current loss under the energy release state also increases.
Keywords: space flywheel motor, eddy current loss, winding loss.
目录
摘要 I
Abstract II
第一章 绪论 2
1.1 课题研究的背景和意义 2
1.2 航天飞轮电机的研究发展现状 2
1.3 航天飞轮电机的关键问题及其研究现状 3
1.3.1 转子涡流损耗 4
1.3.2 定子绕组铜损 4
1.4 本文主要研究内容 5
第二章 航天飞轮电机的基本结构及其工作原理 6
2.1 航天飞轮电机的基本结构 6
2.2 航天飞轮电机的工作原理 6
第三章 航天飞轮电机转子涡流损耗的计算与分析 8
3.1 引言 8
3.2 转子涡流损耗的影响因素 8
3.3 转子涡流损耗有限元分析 8
3.3.1 磁极厚度对空载转子涡流损耗的影响 9
3.3.2 槽口宽度对空载转子涡流损耗的影响 10
3.3.3 磁极分块对空载转子涡流损耗的影响 10
3.3.4 磁极间隔对空载转子涡流损耗的影响 11
3.4 本章小结 12
第四章 航天飞轮电机绕组损耗的计算与分析 13
4.1 引言 13
4.2 飞轮电机铜损的影响因素 14
4.3 飞轮电机绕组损耗的有限元分析 14
4.3.1 电流频率对绕组铜损的影响 14
4.3.2 电流频率对绕组涡流损耗的影响 15
4.3.3 电机转速对绕组铜损的影响 16
4.3.4 电机转速对绕组涡流损耗的影响 20
4.4 本章小结 25
第五章 结论 25
致谢 26
参考文献 27
附录 29
绪论
课题研究的背景和意义
虽然早就有人提出了类似飞轮电机的构想,但是由于技术无法支持,直到后来科技逐渐发达,才由格伦研究中心将飞轮装置应用在航天领域上。让航天器功能更多元化和减小体积是目前研究发展的方向。飞轮电机的飞轮储能系统非常适用于航天器中,不仅减小体积、降低成本,而且将储能系统与调控系统结合在一起。飞轮电机是飞轮储能系统的重要组成,而飞轮储能系统能提高航天器的运行效率,因此对飞轮储能系统电机的研究非常重要。
太空是一个高真空,微重力环境,而且有着很大的温差(-120℃~150℃),这些因素对航天飞轮电机都有着很大的影响。一般的电机在运行时都是默认压力、温度等因素忽略不计,但是在太空中这些因素会使设计电机时要考虑的因素增加许多。在太空中的热传递只有辐射,所以散热就成了一个优化航天飞轮电机的重点。而电机中的热能大多来自于损耗,因此电机散热性能的优化从根本上来说就是减小损耗。
剩余内容已隐藏,请支付后下载全文,论文总字数:33714字
该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;