论文总字数:21664字
摘 要
在面向第五代(5G)移动通信系统的研究工作中,大规模MIMO多天线技术是重要的关键技术之一。虽然当前的商用蜂窝系统大多采用频分双工(FDD)模式,但是目前大多数关于大规模MIMO系统的研究都是基于时分双工(TDD)模式的。目前标准化的方法需要把FDD大规模MIMO系统中珍贵的下行链路和上行链路资源用于传输训练序列以及反馈信道状态信息(CSI),这是因为在基站有着大量的传输天线。为了减少下行链路训练阶段的开销,本文提出一种实用的开环和闭环信道估计训练序列结构。本文假设基站和用户均已知一个训练序列。在开环训练中,基站采用轮询调度方法传输训练信号,用户根据当前接收到的信道数据、时间相关系数、空间相关矩阵以及之前接收到的信道数据来估计信道。在闭环训练中,用户反馈基于信道预测和之前接收训练序列的最佳训练信号。因为从用户到基站有少量的信息反馈,所以闭环训练在数据传输方面效果更佳,尤其是在信噪比很低,传输天线数量很多或者在通信刚建立时先验信道估计不太精确的情况下。
关键词:开环训练;闭环训练;信道估计;大规模MIMO系统
Research on channel information acquisition technology in massive mimomutiple-antenna systems
Abstract
In the research of the fifth generation (5G) mobile communication system, multi-antenna technology in massive MIMO system is one of the key technologies. Most literature on massive MIMO systems assumes time division duplexing(TDD), although frequency division duplexing (FDD) dominates current cellular systems. Due to the large number of transmit antennas at the base station,currently standardized approaches would require a large percentage of the precious downlink and uplink resources in FDD massive MIMO be used for training signal transmissions and channel state information (CSI)feedback. To reduce the overhead of the downlink training phase, we propose practical open-loop training and closed-loop training frameworks in this paper. We assume the base station and the user share a common set of training signals in advance. In open-loop training , the base station transmits training signals in a round-robin manner,and the user estimates the current channel successively using not only the current received channel statistics but the previous channel estimates and temporal correlation coefficient, spatial correlation matrix. In closed-loop training , the user feeds back the best training signal to be sent in the future based on channel prediction and the previously received training signals. With a small amount of feedback from the user to the base station, close-loop training offers better performance in the data communication phase, especially when the signal-to-noise ratio is low, the number of transmit antenna is large, or prior channel estimates are not accurate at the beginning of the communication setup, all of which would be mostly beneficial for massive MIMO systems.
Key words: open-loop training; closed-loop training; channel estimation; massive MIMO system
目录
大规模MIMO多天线系统下行链路信道获取技术研究 I
摘 要 I
Abstract II
第一章 绪论 1
1.1研究背景和意义 1
1.2大规模MIMO多天线技术 1
1.3研究内容及创新点 1
1.4本文的主要内容与安排 3
第二章 大规模MIMO系统概述 4
2.1 MIMO无线信道传播特性 4
2.2 MIMO信道模型分类 5
2.3 本章小结 6
第三章 大规模MIMO系统无记忆信道估计 7
3.1系统模型 7
3.2 无记忆训练序列及其饱和效应 8
3.2.1无记忆最佳训练序列结构 9
3.2.2无记忆训练的饱和效应 10
3.3 本章小结 13
第四章 大规模MIMO系统基于卡尔曼滤波的信道估计 14
4.1有记忆开环训练 14
4.2有记忆闭环训练 15
4.2.1最小化均方误差(MSE-Based) 16
4.2.2最大化平均接收信噪比(SNR-Based) 22
4.2.3全反馈情况下使均方误差最小的有记忆闭环训练 24
4.2.4训练序列P的设计 26
4.2.5系统参数对闭环训练的影响 26
第五章 总结 28
5.1论文总结 28
参考文献 29
致谢 31
第一章 绪论
1.1研究背景和意义
移动通信技术从70年代末开始以惊人的速度迅速发展,截止到现在,已从第一代模拟通信系统(1G),到第二代(2G)、第三代(3G)数字移动通信系统,第四代移动通信系统(4G),目前许多国家正在积极研究第五代(5G)移动通信技术。仅仅传递语音的通信技术显然已经不能够满足人们对信息交流的需求,除了语音之外,人们还希望能够随时获得视频,图片等多媒体信息,这些都要求寻求频谱利用率更高的技术,寻求通信容量更大的移动通信系统,这些都极大地推动了移动通信系统的研究和发展。
剩余内容已隐藏,请支付后下载全文,论文总字数:21664字
该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;