论文总字数:21851字
摘 要
对于任何设计、制造或维修电子设备的人来说,数字示波器都是必不可少的工具。它给我们提供了一个观察电信号的视角,让我们了解电路的运行状态。但是传统数字示波器体积较大,不适合随身携带,不利于在各个场景下快速进行电路测量分析,因此,便携式数字示波器是一个急需发展的方向。
传统的数字示波器大多采用ARM FPGA架构,这种设计方式,充分利用了FPGA在高速信号处理和逻辑控制方面的优势,可以实现极高的采样率和繁琐的时序控制,而ARM内核处理器在软件和外围功能方面的优势,为示波器提供了良好的人机交互体验。然而,该方案的硬件设计量非常大,各个子系统之间的联系过于紧密,无法实现体积的大幅缩小。因此,本文设计了一种基于ARM内核微控制器的便携式数字示波器,并以数字示波器的采集方式和人机交互为研究对象,实现了数字示波器的功能化和微型化。
本设计的采集系统主要利用ARM内核微控制器的片上外设,利用定时器和DMA进行时序控制,形成采集模块。定时器通过输出编码时钟使ADC进行高速采样转换,同时定时器触发DMA将ADC转换数据从微控制器IO口传输到内部SRAM进行数据保存。整个采集周期利用微控制器的片上外设进行时序控制,基本上不需要ARM内核的参与,使得由片上外设组成的采集模块取代了FPGA的高速采集功能,经过测试,该方案的采样率达到了20MSPS。另一方面,该系统的触发方式采用软件触发,该方案通过对采集数据进行逻辑分析,找出波形触发点并判断出当前的波形边沿,实现了不涉及硬件电路的触发系统。这两种设计方案通过整合系统资源和用软件代替硬件的方式,减少了系统硬件电路的设计量,为示波器的微型化设计提供了可能。
系统的人机交互主要是对应用的功能和UI进行设计,由于数字示波器的体积需要做到便携的尺寸,所以需要裁剪传统数字示波器的操作面板,为了保证系统在小尺寸体积下操作的便携性,本设计采用纯触控的方式进行人机交互,使得示波器的运行参数可以通过屏幕的触控进行选择,另外,通过对移动消费电子的应用设计元素进行分析和调查,并结合示波器的应用需求,本文设计出了一款界面简洁、操作舒适的UI。
本课题的研究设计表明,在一定系统指标范围内,采用ARM内核微控制器的片上外设可以实现对FPGA的功能替换,同时配合系统的软件处理,能够节省硬件触发电路的设计,从而减少系统的设计成本和体积,实现数字示波器的便携式设计。在人机交互设计上,简洁的UI设计和触屏的操作方式,符合当下便携式设备的潮流和定位,为使用者提供了良好的设备体验,希望本课题的研究能够对数字示波器的便携式方向发展提供参考和借鉴。
关键词:ARM内核微控制器;数字储存示波器;便携测量设备
Design and Implementation of A Portable Digital Oscilloscope Based on ARM Microcontroller
Abstract
The digital oscilloscope is an essential tool for anyone who designs, builds or repairs electronic equipment. It gives us a view of electrical signals and allows us to understand the operation of a circuit. However, traditional digital oscilloscopes are large and unsuitable for carrying around and are not conducive to rapid circuit measurement and analysis in various scenarios, making portable digital oscilloscopes a much-needed direction of development.
Most traditional digital oscilloscopes use ARM FPGA architecture, a design approach that takes full advantage of the FPGA in high-speed signal processing and logic control to achieve extremely high sampling rates and tedious timing control, while the ARM core processor provides a good human-computer interaction experience for the oscilloscope in terms of software and peripheral functions. However, the hardware design volume of the solution is very high and the various subsystems are too closely linked to each other to achieve a significant reduction in size. Therefore, this paper designs a portable digital oscilloscope based on an ARM core microcontroller, and examines the acquisition method and human-computer interaction of the digital oscilloscope to achieve a functional and miniaturised digital oscilloscope.
The acquisition system of this design mainly utilises the on-chip peripherals of the ARM core microcontroller to form an acquisition module using timers and DMA for timing control. The timer enables the ADC to perform high-speed sampling and conversion by outputting a coded clock, while the timer triggers a DMA to transfer the ADC conversion data from the microcontroller IO port to the internal SRAM for data storage. The whole acquisition cycle uses the on-chip peripherals of the microcontroller for timing control, which basically does not require the participation of the ARM core, making the acquisition module composed of on-chip peripherals replace the high-speed acquisition function of the FPGA, and after testing, the sampling rate of the scheme reaches 20MSPS. On the other hand, the triggering method of the system adopts software triggering, and the scheme finds out the waveform trigger point and determine the current waveform edge, realising a triggering system that does not involve hardware circuitry. These two design solutions reduce the amount of hardware circuitry in the system by integrating system resources and replacing hardware with software, offering the possibility of miniaturising the design of the oscilloscope.
The human-computer interaction of the system is mainly to design the functions and UI of the application. As the volume of the digital oscilloscope needs to be of portable size, the operation panel of the traditional digital oscilloscope needs to be cut down, in order to ensure the portability of the operation of the system in a small size volume, this design uses pure touch for human-computer interaction, so that the operating parameters of the oscilloscope can be selected by the touch of the screen, in addition, by analysis and investigation of the application design elements of mobile consumer electronics, and combined with the application requirements of the oscilloscope, this paper has designed a UI with a simple interface and comfortable operation.
The research and design of this topic shows that within a certain range of system specifications, the use of on-chip peripherals of ARM core microcontrollers can achieve functional replacement of FPGAs, while with the software processing of the system, it can save the design of hardware trigger circuits, thus reducing the design cost and volume of the system and realising the portable design of digital oscilloscopes. In terms of human-computer interaction design, the simple UI design and touch screen operation are in line with the current trend and positioning of portable devices, providing users with a good experience of the device. It is hoped that the research on this topic can provide a reference and reference for the development of the portable direction of the digital oscilloscope.
Keywords:ARM Core Microcontrollers;Digital Storage Oscilloscopes;Portable Measuring Equipment
目 录
摘 要 I
Abstract II
第一章 引 言 1
1.1 论文工作的背景与意义 1
1.2 国内外研究现状 1
1.3 工作的主要内容 2
第二章 示波器的方案设计 3
2.1 设计方案论证与比较 3
2.1.1 MCU选型 3
2.1.2 ADC选型 3
2.1.3 屏幕显示方案 4
2.1.4 模拟信号处理电路方案 4
2.2 系统总体方案 5
第三章 系统硬件电路设计 6
3.1 电源管理电路设计 6
3.1.1 锂电池充放电电路 6
3.1.2 模拟电路供电电路 6
3.1.3 数字电路供电电路 7
3.2 模拟信号处理电路设计 8
3.3 ADC电路设计 8
3.4 MCU电路设计 9
3.4.1 MCU硬件资源分配 9
3.4.2 MCU外围电路 10
第四章 系统程序设计 12
4.1 测量采集功能程序设计 12
4.1.1 ADC通信采集程序设计 12
4.1.2 信号处理程序设计 13
4.2 屏幕显示程序设计 14
4.2.1 屏幕驱动程序设计 14
4.2.2 UI界面程序设计 15
4.3 系统总程序设计框图 17
第五章 分析与论证 20
5.1 示波器实物介绍 20
5.1.1 菜单功能介绍 21
5.1.2 示波器波形控制功能 25
5.2 功能指标测试 26
剩余内容已隐藏,请支付后下载全文,论文总字数:21851字
该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;