论文总字数:23028字
摘 要
气固流化床在工业生产领域应用非常广泛,在粉体颗粒的流化过程中,由于颗粒之间和颗粒与壁面之间的持续不断的摩擦碰撞,流化床中极易造成静电的产生和积累。随着静电的不断积聚,流化床内的静电压可高达数万伏,存在静电放电导致爆炸的危险。对于流化过程中静电现象的研究早在上个世纪就已经展开,但是由于静电和流化的都是非常复杂的现象,已有的研究所得到的结论差异巨大。迄今为止,对于颗粒荷电的过程及颗粒的荷电特性,仍然没有形成完整的理论体系。
本课题旨在以聚乙烯和聚丙烯颗粒为原料,搭建可视化的多颗粒流化荷电实验台,探究二元颗粒流化过程中,流化风速、物料种类和壁面材料对颗粒静电特性的影响,揭示荷电颗粒的双极带电特性。
对物料种类的研究表明,聚乙烯和聚丙烯在不锈钢流化床中流化以后总体均带负电,同等条件下聚丙烯颗粒的荷质比高于聚乙烯。对壁面材料的实验研究表明,不论对聚乙烯颗粒还是聚丙烯颗粒,壁面材料为不锈钢时颗粒的平均荷质比始终大于壁面材料为有机玻璃时颗粒的平均荷质比。由此得出,颗粒流化后的静电水平受到流化颗粒和壁面材料功函数差值的影响。对流化风速的实验研究表明,颗粒流化后的静电水平随着流化风速的提高而逐渐增大,而且当流化风速较高时,大小颗粒碰撞摩擦时的双极带电现象更加明显,其中小颗粒的荷质比的绝对值明显大于大颗粒的荷质比的绝对值。
关键词:流化床,二元颗粒,双极带电,功函数
Abstract
Gas-solid fluidized bed is widely used in industrial production, but the flow of particles is accompanied by constant contact between particles and particles and the column wall. As a result, static electricity is inevitably generated and accumulated. With the continuous accumulation of static electricity, the static voltage in the fluidized bed can reach tens of thousands of volts, which would lead to a danger of explosion. The research on the electrostatic phenomenon in the fluidization process has been carried out as early as the last century, but since the static electricity and fluidization are very complicated phenomena, the conclusions of the existing research are very different. So far, a complete theoretical system has not been formed for the process of particle charging.
Research were conducted to build a visualized multi-particle fluidized charging test bench using polyethylene and polypropylene particles as raw materials to explore the effects of fluidized wind speed, material type and wall material on the electrostatic properties of particles, especially the phenomenon of bipolar charging.
Experiments conducted on show that polyethylene and polypropylene are negatively charged after fluidization in a steel fluidized bed. Under the same conditions, the charge density of polypropylene particles is higher than that of polyethylene. Experiments on column wall materials have shown that the average charge density of the particles when the column wall is made of steel is always larger than that of the particles when the column wall material is plexiglass, regardless of whether the polyethylene or polypropylene particles. It follows that the charge density of the particles is affected by the difference in work function between the fluidized particles and the column wall material. For all fines tested, increasing gas velocity could result in an increase of charge density of particles in the freeboard, and an increase of difference of charge density of coarse particles and fine particles. The absolute value of the charge density of fine particles is obviously larger than that of coarse particles.
KEY WORDS: fluidized bed, binary particle, bipolar charge, work function
目 录
摘 要 I
Abstract II
目 录 III
第一章 绪论 1
1.1课题研究背景与意义 1
1.2本研究的主要工作 1
第二章 文献综述 3
2.1静电学的发展历程 3
2.2静电的产生 4
2.2.1接触带电 4
2.2.2摩擦带电 4
2.3静电的测量 6
2.3.1法拉第筒法 6
2.3.2静电探头法 6
2.4气固流化床中的静电研究现状 7
2.5颗粒的双极带电现象 8
2.6小结 8
第三章 实验装置与方案 9
3.1实验原料 9
3.2实验装置 10
3.2.1流化床 11
3.2.2供气装置 11
3.2.3风选装置 11
3.2.4静电测量装置 12
3.3实验方案 13
第四章 气固流化床内粉体静电特性 15
4.1法拉第筒倾倒误差分析 15
4.2风力分选效率分析 16
4.3物料种类对颗粒静电特性的影响 16
4.4壁面材料对颗粒静电特性的影响 17
4.5流化风速对颗粒静电特性的影响 19
第五章 总结与展望 21
5.1结论 21
5.2展望 21
致 谢 23
参考文献 24
第一章 绪论
1.1课题研究背景与意义
气固流化床在工业生产中起着非常重要的作用,被广泛应用于许多工业生产领域,如能源、化工、冶金、食品加工等。流化床运行过程中,颗粒与颗粒之间和颗粒与壁面之间时刻在发生碰撞摩擦,不可避免地会产生静电。静电不断地积累聚集,形成强大的静电场,会影响流化床中颗粒的正常流动,从而带来很多安全隐患,如颗粒团聚、粘壁、结片乃至静电燃爆等等。静电危害轻则影响运行生产、烧毁设备,重则造成厂房倒塌、大量人员伤亡。在流化床运行过程中,静电危害是没有办法避免的,通过理论与实验研究,找到系统的理论解释颗粒荷电机制,进而提供控制流化床中静电的有效方法,才能从根源上避免安全事故的发生,减少静电危害造成的损失。
早在20世纪中叶,流化床中的静电现象,就已经出现在相关领域研究者的视野中,然而,由于静电和流化的都是非常复杂的问题,到目前为止,关于静电的产生、累积和耗散机制,人们仍旧了解甚少[1]。通过研究流化床内静电产生的机理及影响因素,对有效地控制流化床中的静电水平,从而减少生产过程中安全事故的发生,保证工业生产过程的安全稳定,具有重大的经济意义。
剩余内容已隐藏,请支付后下载全文,论文总字数:23028字
该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;