论文总字数:28525字
摘 要
L10相CoPt/FePt合金具有非常高的磁晶各向异性、良好的稳定性和抗氧化性,其抗超顺磁性极限尺寸可达4nm,因此被视作最有前景的新一代超高密度磁记录材料。但L10相CoPt/FePt合金纳米颗粒制备时需要进行500-700℃的高温退火,难以避免颗粒烧结机长大,因此难以制备出小尺寸的纳米颗粒。本文探索了以硫酸钾盐为隔离相(熔点1065℃)制备分散CoPt/FePt磁性纳米颗粒的方法。
本文尝试了共沉淀法制备前驱体-盐隔离和浸渍-盐隔离两种制备方法来制备CoPt/FePt纳米颗粒,研究了两种方法的可行性及存在缺陷。其中,对共沉淀法中出现的Pt元素逃逸问题进行了原因分析,对浸渍-盐隔离法中隔离盐的种类、用量、还原温度等影响因素进行了研究。论文主要得到以下结论:
1、共沉淀法制备FePt纳米颗粒时,前驱体成分难以控制,Pt元素非常容易流失。
2、浸渍-盐隔离法制备CoPt/FePt纳米颗粒时,NaCL、NaF、这三种无机盐各有优劣,其中NaF、在氢气高温还原条件下容易发生反应。
3、浸渍-盐隔离法制备CoPt/FePt的路线是基本可行的,但需要进一步优化。现有参数制备出的CoPt颗粒尺寸不均匀,小颗粒的尺寸在10nm以下。纳米CoPt颗粒样品的矫顽力为455 Oe。
关键词:CoPt/FePt,纳米颗粒,共沉淀法,浸渍法,盐隔离法
Abstract
The L10-phase CoPt/FePt alloy has very high magnetocrystalline anisotropy, good stability and oxidation resistance, and its superparamagnetic limit of up to 4 nm is considered as the most promising new generation of ultra-high density magnetic Record material. However, when the L10-phase CoPt/FePt alloy nanoparticles are prepared, it needs to be annealed at a high temperature of 500-700° C. It is difficult to avoid the growth of the particle sintering machine, and thus it is difficult to prepare small-sized nanoparticles. This paper explored the preparation of dispersed CoPt/FePt magnetic nanoparticles using potassium sulfate as the separator (melting point at 1065°C).
In this paper, two preparation methods of precursor-salt isolation and impregnation-salt isolation were prepared by co-precipitation method to prepare CoPt/FePt nanoparticles. The feasibility and defects of the two methods were studied. Among them, the causes of the escape of Pt elements in the co-precipitation method were analyzed, and the influencing factors of the type, amount, and reduction temperature of the isolated salt in the impregnation-salt isolation method were studied. The main conclusions of the thesis are as follows:
- When the coprecipitation method is used to prepare FePt nanoparticles, the precursor composition is difficult to control and the Pt element is very easily lost.
- In the preparation of CoPt/FePt nanoparticles by impregnation-salt isolation method, the three inorganic salts of NaCl, NaF and each have advantages and disadvantages, among which NaF andare prone to occur under the conditions of high temperature hydrogen reduction. reaction.
- impregnation -salt isolation method to prepare CoPt / FePt route is basically feasible, but need further optimization. The CoPt particles prepared by the existing parameters are not uniform in size and the size of the small particles is below 10 nm. The coercive force of the nano CoPt particle sample is 455 Oe.
KEY WORDS: CoPt/FePt, nanoparticles, salt separation , impregnation, co-precipitation method
目录
摘要 I
Abstract II
目录 3
第一章 绪论 5
1.1 引言——磁记录材料的三角困境 5
1.2 FePt/CoPt磁性材料概述 7
1.3 FePt/CoPt磁性材料的制备工艺 8
1.3.1磁控溅射 8
1.3.2化学合成 8
1.4 盐隔离法 9
1.4.1传统化学合成法的团聚问题 9
1.4.2盐隔离法概述 10
1.4.2 隔离盐的选取 11
1.5 实验的主要内容和意义 12
第二章 FePt/CoPt材料的制备和表征方法 13
2.1 引言 13
2.2 实验试剂及仪器 13
2.3技术路线及具体步骤 14
2.3.1 共沉淀-盐隔离法 14
2.3.1 浸渍-盐隔离法 15
2.4 FePt/CoPt的表征方法 17
2.4.1 扫描电子显微镜(SEM)表征 17
2.4.2 X射线能谱仪(EDS)表征 17
2.4.3 X射线衍射物相(XRD)表征 17
2.4.4 透射电子显微镜(TEM)表征 17
2.4.5 振动样品磁强计(VSM)表征 17
第三章 FePt/CoPt材料的表征及分析 18
3.1隔离盐的基本性质和表征 18
3.1.1 基本特性 18
3.1.2 SEM表征 19
3.2 共沉淀-盐隔离法 21
3.2.1 Pt元素的逃逸问题 21
3.2.2 Pt元素逃逸的可能途径及探索 22
3.2.3 Pt元素逃逸的原因 23
3.3 浸渍-盐隔离法 25
3.3.1 浸渍法 25
3.3.2 分散过程实验现象 25
3.3.3 高温烧结过程实验现象 26
3.3.4 XRD 表征结果 28
3.3.5 TEM 表征结果 30
3.3.6 磁性测试及VSM 表征结果 31
第四章 结论与展望 32
4.1结论 32
4.2 展望 32
参考文献 34
致谢 37
绪论
1.1 引言——磁记录材料的三角困境
1995年, IBM 公司应用巨磁电阻(GMR)效应,成功研制出巨磁电阻磁头,极大程度地提高了磁盘的数据容量。2005年, 随着技术的发展,磁盘记录密度超过130 Gb/in2,但这已经快接近当时的极限。为了突破这一限制,研究人员在各个方向上做了许多研究。1977年, Iwasaki等人[1]提出了垂直磁记录(PMR)技术并完善了相应的理论, 但相应的技术支持(例如:垂直记录介质、软磁层、读写磁头等)经过了30年才慢慢被完善。21世纪初期,随着PMR技术从实验室走向市场,磁记录密度在被不断提高,硬盘市场也逐渐被新一代的PMR硬盘占据。但到10年后的今天,在这种数据爆炸式增长的现代社会中,现有PMR硬盘的磁记录密度仍然无法满足发展的需求,研究新一代超高密度磁记录材料迫在眉睫。
超高密度磁记录材料,意味着单位信息对应的记录单元体积非常小,但当记录单元小到一定程度时,磁性材料又会产生超顺磁效应。
剩余内容已隐藏,请支付后下载全文,论文总字数:28525字
该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;