论文总字数:30794字
摘 要
纤维增强陶瓷基复合材料(FRCMC)耐高温、耐腐蚀,且具有高强度,又因其特殊的增强机制使其具有一定的韧性,因此,广泛应用于各个领域。在复合材料中,界面层是处于纤维和基体间的一个局部微小区域,它影响了FRCMC的力学性能、抗腐蚀性能等,是决定复合材料强度和韧性的重要因素。因此,对界面层的研究一直是FRCMC研究的热点之一。
为了进一步了解陶瓷基复合材料的纤维界面层及其对性能的影响,本文用水玻璃、煅烧高岭土和NaOH制备基体、高强玻璃纤维布或石英短纤维作为增强体、以硅树脂或酚醛树脂作为界面层,采用热压工艺制备FRCMC。本文通过改变界面层的厚度、界面层材料、纤维含量等探讨了界面层、纤维含量对复合材料性能的影响;对纤维界面层的厚度、复合材料的耐水性、弯曲强度等开展了研究;利用光学显微镜和扫描电子显微镜(SEM)对复合材料断口的纤维拨出等情况进行了观察分析。
研究结果表明:纤维界面层、纤维含量对FRCMC的各项性能有很大影响。通过利用不同质量浓度的硅树脂溶液(或酚醛树脂溶液)处理纤维,可得到不同厚度的界面层。通过SEM图像确定了硅树脂(酚醛树脂)界面层越厚,基体与纤维界面结合强度越低,以及纤维在材料中通过断裂、脱粘、拨出等方式进行增强。通过三点弯曲的测试证明了陶瓷基体为脆性材料,以及FRCMC具有一定的韧性。通过耐水性测试表明了制备的复合材料为耐水性材料,能在潮湿环境中使用。随着界面厚度的增大,FRCMC的弯曲强度先增大后减小,最大值为43.77MPa,对应的界面层厚度约为0.2μm。随着纤维含量的增多,FRCMC的弯曲强度先增大后减小,纤维含量过多甚至难以形成复合材料。陶瓷基体在700℃时强度明显降低。硅树脂界面层厚度越大,处理后的纤维越易燃烧,制备的复合材料燃烧的可能性越大。酚醛树脂处理的纤维高温不燃烧,但达到一定温度时强度会降低,而相应制备的复合材料1100℃的高温下也不燃烧。
关键词:纤维增强陶瓷基复合材料 玻璃纤维布 石英短纤维 硅树脂 界面处理 制备工艺 性能研究
Abstract
Fiber reinforced ceramic matrix composites (FRCMC) have excellent heat resistance, corrosion resistance, high strength and a certain toughness cause by special mechanism of enhancement. So FRCMC are widely used in various fields. Interface layer, a local small area between fiber and matrix, which account for less than 10% of the volume fraction of composite material but affect the FRCMC’s properties, such as mechanical properties, environmental erosion resistance, is an important factor of strength and toughness of the composite material. Therefore, the study of interface layer has been one of hot topics in the study of composite materials
To further understand fiber interface layer and tis effect on the performance of FRCMC, water glass, calcined kaolin and NaOH to the preparation of ceramic substrate, high strength glass fiber cloth or quartz short fiber as reinforcement and with silicone resin or phenolic resin as the interface layer, to prepare FRCMC by hot pressing technology. In this paper, how interface layer and fiber content affect the properties of FRCMC were discussed by changing the thickness of the interface layer, interface layer materials, fiber content. I have researched the interface layer of fibers, the water resistance, fire resistance, bending strength of FRCMC.
The results show that the fiber interface layer and fiber content have a great effect on the various properties of FRCMC. Taking advantage of different mass concentration of silicon resin solution (or phenolic resin solution) fiber, can get different thickness of the interface layer. By the SEM images, it is convinced that the thicker of silicon resin (or phenolic resin) interface layer, the bonding strength between of the matrix and fiber interface is lower, and fibers in the materials improve the material strength by fiber fracture, fiber debonding, and fiber pull-out. It is proved ceramic matrix is brittle material and FRCMC has a certain toughness by three point bending test. Prepared FRCMC is water-based materials and has hydraulicity. With the increase of the interface thickness, FRCMC bending strength increases first and then decreases, and when the interface thickness is 0.2μm, the maximum of bending strength is 43.77MPa. The results of the study show that the bending strength of FRCMC present the trend of increased first, then decreased with fiber content increased. Moreover, The strength of ceramic matrix decreases obviously at 700 ℃.The greater silicone interface layer thickness, the treated fiber is much easier to burn, and the greater possibility of burning composite materials. Fibers treated by phenolic resin can’t burn at the high temperature, but strength will decrease at a certain temperature, and composite materials also can’t burn even at 1100℃.
KEY WORDS: FRCMC; glass fiber cloth; short fiber; silicon resin; interface processing; preparation technology; performance study
目录
摘 要 i
Abstract ii
第一章 绪论 1
1.1纤维增强陶瓷基复合材料 1
1.1.1纤维增强陶瓷基复合材料的性能特点 1
1.1.2纤维增强陶瓷基复合材料的研究进展 1
1.2复合材料的界面层 2
1.2.1界面层的功能 2
1.2.2纤维的界面改性 2
1.2.3影响界面处理效果的因素 3
1.2.4界面层研究现状 3
1.3复合材料的纤维增强体和界面处理材料 4
1.4纤维增强陶瓷基复合材料的成型工艺 4
1.5本课题研究目的、意义和内容 5
1.6本章小结 5
第二章 实验所用材料与实验研究方法 7
2.1实验所用设备 7
2.2实验所用原材料 7
2.2.1水玻璃 7
2.2.2高岭土 7
2.2.3高强玻璃纤维布 7
2.2.4石英短纤维 8
2.2.5硅树脂 9
2.2.6酚醛树脂 9
2.2.7其他原材料 9
2.3界面层处理工艺 10
2.4纤维增强陶瓷基复合材料的性能研究方法 11
2.4.1复合材料的耐水性和吸水性 11
2.4.2复合材料的弯曲强度 12
2.4.3纤维界面层的结构分析 13
2.4.4复合材料断口形貌分析 13
2.4.5处理后的纤维和复合材料在高温下的强度变化及燃烧情况 13
第三章 纤维界面处理工艺及陶瓷基复合材料的成型工艺的研究 14
3.1 纤维界面处理工艺 14
3.2陶瓷基体的选择 15
3.2.1陶瓷基体的选择 15
3.2.2煅烧高岭土的制备与分析 16
3.3复合材料的成型工艺 16
3.4本章小结 17
第四章 纤维增强陶瓷基复合材料的性能研究 19
4.1复合材料的耐水性和吸水性 19
4.1.1吸水性 19
4.1.2尺寸(形状) 19
4.1.3 强度变化——软化系数 20
4.2纤维界面层对复合材料弯曲强度的影响 21
4.2.1硅树脂界面层厚度对玻璃纤维增强陶瓷基复合材料弯曲强度的影响 21
4.2.2硅树脂界面层厚度对石英短纤维增强陶瓷基复合材料弯曲强度的影响 23
4.2.3界面材料和纤维含量对玻璃纤维增强陶瓷基复合材料弯曲强度的影响 26
4.3复合材料断裂形貌分析 27
4.3.1玻璃纤维布增强陶瓷基复合材料断裂形貌分析 27
4.3.2石英短纤维增强陶瓷基复合材料断裂形貌分析 29
4.4纤维和复合材料在高温下的强度变化及燃烧情况 31
剩余内容已隐藏,请支付后下载全文,论文总字数:30794字
该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;