论文总字数:26468字
摘 要
随着建筑建造能耗和生活中房间控温能耗的不断增加,绿色建筑的概念被提出并逐渐被完善。相变材料作为一种储能材料,应用于建筑材料领域中,可对混凝土的水化热进行吸收防止混凝土由于温度应力而产生开裂。相变材料可通过相变过程进行储放热对建筑内部的温度进行调节。
本次试验中,对石蜡PCM进行DSC测试,确定其相变温度与相变潜热。将熔融石蜡与膨胀蛭石混合制备石蜡/膨胀蛭石复合PCM来替代混凝土中的部分细骨料,对石蜡/膨胀蛭石复合PCM进行DSC测试、观察复合后PCM的相变温度、相变潜热的变化。通过多孔骨料替代法进行相变混凝土的成型,设计相变混凝土的对照组的强度等级为C40。测试相变混凝土7天、28天的抗压强度与28天的抗折强度,做出图表进行比较和分析。对混凝土水化温度进行测定并做出曲线,分析复合PCM对混凝土水化热的吸收情况。通过试验初步确定石蜡/膨胀蛭石复合PCM在混凝土中的最合适的掺量。
所用到的石蜡PCM的相变温度为25.1℃,相变潜热为137.5J/g左右,与膨胀蛭石复合后,相变潜热变化量很小且导热系数变大。石蜡/膨胀蛭石PCM在混凝土中的掺量在0%-20%,随着石蜡/膨胀蛭石复合PCM的掺量增大,相变混凝土的7天、28天抗压强度逐渐降低,而石蜡/膨胀蛭石复合PCM掺量为10%时,抗折强度最低。根据24h内混凝土内部的温度变化,可以确定在石蜡/膨胀蛭石复合PCM掺入量为20%时,复合PCM对水化热的吸收作用最强,而掺入量在5%、10%、15%时,复合PCM对相变混凝土的水化热吸收的效果相近。同时考虑到热力学性能与力学性能的影响,可暂且认为当复合PCM的掺入量在5%或15%时,相变混凝土具有较好的性能。
关键词:石蜡;膨胀蛭石;相变混凝土;石蜡/膨胀蛭石复合PCM
ABSTRACT
With the increasing energy consumption of building construction and room temperature control in daily life, the concept of green building has been proposed and gradually improved.As an energy storage material, phase change material is applied in the field of building materials, which can absorb the hydration heat of concrete and prevent concrete from cracking due to temperature stress.Phase change materials can store and release heat during the phase change process to regulate the temperature inside the building.
In this test, the paraffin PCM was DSC tested to determine its phase change temperature and latent heat of phase change.Paraffin/expanded vermiculite composite PCM was prepared by mixing melted paraffin and expanded vermiculite to replace some fine aggregate in concrete. DSC test was conducted on the paraffin/expanded vermiculite composite PCM, and the changes of phase change temperature and latent heat of phase change of PCM after composite were observed.Phase change concrete was molded by porous aggregate substitution method, and the strength grade of the control group was C40.Test the compressive strength of phase change concrete in 7 and 28 days and the flexural strength in 28 days, and make a chart for comparison and analysis.The hydration temperature of concrete was measured and curve was made to analyze the absorption of hydration heat of concrete by composite PCM.The most suitable content of paraffin/expanded vermiculite composite PCM in concrete was preliminarily determined by test.
The phase change temperature of paraffin PCM used was 25.1℃, and the latent heat of phase change was about 137.5J/g. After it was combined with expanded vermiculite, the change of latent heat of phase change was small and the thermal conductivity increased.The content of paraffin/expanded vermiculite PCM in concrete is between 0% and 20%. With the increase of the content of paraffin/expanded vermiculite composite PCM, the 7-day and 28-day compressive strength of phase change concrete gradually decreases, while when the content of paraffin/expanded vermiculite composite PCM is 10%, the flexural strength is the lowest.According to the internal temperature changes of concrete within 24h, it can be determined that when the addition of paraffin/expanded vermiculite composite PCM is 20%, the composite PCM has the strongest absorption effect on hydration heat, while when the addition of 5%, 10% and 15%, the composite PCM has similar absorption effect on hydration heat of phase-change concrete.At the same time, considering the influence of thermodynamic and mechanical properties, it can be temporarily considered that the phase-change concrete has better performance when the content of composite PCM is 5% or 15%.
KEY WORDS: paraffin;expanded vermiculite; phase change concrete; paraffin/expanded vermiculite PCM
目 录
第一章 绪论 1
1.1 研究背景及意义 1
1.2 相变混凝土工作原理 1
1.2.1 相变储能材料工作原理及应用 1
1.2.2 相变储能材料的选择原则 2
1.2.3 相变储能材料制备工艺 3
1.3 国内外研究现状 4
1.3.1 国内外研究现状 4
1.3.2 国内外研究现状分析 4
1.4 论文的研究目的与研究思路 5
第二章 原材料、试验仪器和方法 7
2.1 原材料 7
2.1.1 胶凝材料 7
2.1.2 石蜡 7
2.1.3 骨料 8
2.1.4 膨胀蛭石 9
2.1.5 减水剂 9
2.2 测试方法以及试验仪器 9
2.2.1 测试方法 9
2.2.2 试验仪器 10
第三章 石蜡/膨胀蛭石混凝土制备 12
3.1 复合PCM性能分析 12
3.2 配合比设计 13
3.2.1 预拌实验 13
3.2.2 配合比设计 14
3.2.3 减水剂确定 14
3.3 本章小结 15
第四章 石蜡/膨胀蛭石相变混凝土力学性能 17
4.1 抗压强度 17
4.2 抗折强度 19
4.3 本章小结 20
第五章 石蜡/膨胀蛭石混凝土水化温度 21
5.1 水化过程中试件内部温度 21
5.2 本章小结 23
第六章 结论与展望 24
6.1 结论 24
6.2 未来展望 25
参考文献 26
致 谢 28
绪论
研究背景及意义
中国城市化进程不断加快,民用住宅建筑不断增加,空调等调温设备的应用时间明显增长,应用于室内温度调节所需要的电能以及煤炭资源大幅度提高。而在建筑建造与使用过程中产生的能源消耗和污染情况难以避免但可以得到一定程度的改善。在2013-2017年,建筑能耗占社会总能耗的1/3,因此解决建筑建造与使用过程中的建筑能耗过大的问题迫在眉睫,推进绿色建筑进程是解决社会能耗这一重大社会问题的重要举措。
由于我国大部分地区处于温带与亚热带,四季较为分明,冬夏温差较大,同时我国疆土幅员辽阔,黑龙江省漠河县位于我国最北部,冬季寒冷漫长,至今仍保持全国气温最低值(-52.3℃)记录,南至南海岛礁。地形高低起伏大,气候不尽相同,青藏高原终年积雪气温寒冷,边疆地区气候条件更为恶劣,对于极端恶劣环境,民用建筑温度调节是尤为重要的。由于我国大部分地区所处的温度带为温带和亚热带,大部分地区全年最低温度一般不低于-15℃,最高气温不高于40℃,25℃在该温度范围内,且25-27℃是人感觉最舒适的温度,将室温控制在25℃左右的范围是比较合适的。
剩余内容已隐藏,请支付后下载全文,论文总字数:26468字
该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;