论文总字数:18169字
摘 要
随着日常生活水平以及人们需求的提高,汽车成为人们生活中不可或缺的一部分。汽车虽然方便了我们的出行,但同时也造成了城市交通压力,智能交通系统应运而生。车牌识别技术是智能交通系统中最核心最基础的技术之一,决定着智能交通的发展速度和技术水平。
本文对国内外车牌识别技术进行了简单分析和介绍,在现有算法基础上提出了基于机器学习的车牌识别方法,先是经过二值化和归一化预处理已经分割出来的单个字符,然后使用局部区域特征提取法对单个车牌字符进行特征提取,再选用BP神经网络对随机选取的每个字符样本进行测试,实验结果表明本文提出的方法可行,车牌识别准确率达到了90%以上。
本文详细阐述了单个车牌字符图像预处理中二值化的原理,即设定一个阈值T,这里需要使用graythresh函数来获取阈值;和归一化的原理,即通过调用imresize函数来设定目标函数的长和宽。通过这两个步骤完成已经分割好的单个车牌字符图像的预处理工作。
描述了预处理之后使用局部区域特征提取的方法,将处理好的车牌字符图像分割为相同大小的小区域,统计每个小区域中白色像素的占比作为需要的特征值;最后将得到的单个车牌字符图像的特征值选用三层BP神经网络经过输入层,隐藏层,输出层对车牌字符进行训练识别。通过对字符样本的测试,本文所使用的方法对车牌字符识别的准确率较高。
关键词:车牌识别;机器学习;字符分割;特征提取;BP神经网络
Research on License Plate Recognition Based on Machine Learning
Abstract
With the level of daily life and the increasing demand of people, cars have become an indispensable part of people's lives. Although the car facilitated our travel, it also caused urban traffic pressure, and the intelligent transportation system came into being. License plate recognition technology is one of the most core and most basic technologies in intelligent transportation systems, which determines the development speed and technical level of intelligent transportation..
In this paper, the domestic and foreign license plate recognition technology is briefly analyzed and introduced. Based on the existing algorithm, a license plate recognition method based on machine learning is proposed. First, the single character that has been segmented by binarization and normalization is used, and then used. The local area feature extraction method is used to extract the features of a single license plate character. Then BP neural network is used to test each character sample randomly selected. The experimental results show that the proposed method is feasible and the license plate recognition accuracy rate is over 90%.
In this paper, the principle of binarization in the image preprocessing of a single license plate character is elaborated, that is, a threshold T is set, and the graythresh function is needed to obtain the threshold; and the principle of normalization is to set the objective function by calling the imresize function. The length and width. The pre-processing of the image of the individual license plate characters that have been split is completed by these two steps.
The method of local area feature extraction after preprocessing is described, the processed license plate character image is segmented into small areas of the same size, and the proportion of white pixels in each small area is counted as a required feature value; The characteristic value of the license plate character image is selected by the three-layer BP neural network through the input layer, the hidden layer and the output layer to train and recognize the license plate characters. Through the test of character samples, the method used in this paper has higher accuracy for license plate character recognition.
Keywords: License Plate Recognition, Machine Learning, Character Segmentation, Feature Extraction, BP Neural Network
目 录
摘 要 I
Abstract II
第一章 绪 论 1
1.1车牌识别技术研究的背景 1
1.2 车牌识别技术的国内外研究现状与意义 2
第二章 车牌字符图像预处理 4
2.1字符图像的预处理工作 4
2.1.1字符图像二值化 4
2.1.2字符图像归一化 6
第三章 车牌字符图像特征提取 8
3.1 前言 8
3.1.1笔画斜率累积特征提取法 8
3.1.2拐点幅度累积特征提取 9
3.1.3局部区域特征提取法 9
3.2 车牌字符图像识别算法的研究 10
3.3 车牌字符图像识别算法介绍 11
3.3.1 基于模板匹配字符识别的方法 11
3.3.2基于人工神经网络字符识别的方法 11
3.3.3 基于字符特征的方法 12
3.3.4 基于贝叶斯网络的方法 13
第四章 基于BP神经网络的车牌字符识别 14
4.1 BP神经网络的概念 14
4.2 BP神经网络的流程 14
4.2.1 BP神经网络基本结构 14
4.2.2 BP神经网络在车牌识别中的运行流程 15
4.2.3 Sigmoid函数 16
4.2.4 BP神经网络训练 17
4.3 BP神经网络车牌字符实验测试结果及分析 18
4.3.1 实验结果 18
4.3.2 实验结果分析 19
第五章 总结与展望 20
5.1 总结 20
5.2 展望 20
致 谢 21
参考文献 22
第一章 绪 论
1.1车牌识别技术研究的背景
随着当今社会经济的飞速发展,人们的生活水准也随之提高,导致车辆的数目越来越多。而公路容积不足,管理手段还不完善甚至滞后,使得我国交通面临越来越大的压力。现在的车辆牌照自动识别的技术可以应用在道路交通流量监控、交通事故现场处理、交通违法自动记录、高速公路自动收费系统、停车场自动控制升降杆、等方面,车辆牌照自动识别在现代交通管理和监控上占有很大的地位。同时,车辆牌照识别的有关方法在其他领域也可以使用,所以车辆牌照的识别问题已经成为现代交通领域中研究的重点问题热门方向。
剩余内容已隐藏,请支付后下载全文,论文总字数:18169字
该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;