论文总字数:31070字
摘 要
在微纳光子芯片的光耦合技术中,目前有一种新型技术——光子引线键合(photonic wire bonding PWB),可以对柔性波导等方案及实现工艺进行优化设计。在调制器芯片波导入/出端通过一段柔性光子引线与其它有源/无源芯片入/出端或单模光纤连接,可完成高效光耦合。PWB的形状会与集成波导面的实际位置相适应,所以不再需要光学器件的高精度对准,而且空间互连密度也不会受到标准光纤直径的限制。因此,可以采用PWB来连接位于不同芯片上的纳米光子电路之间的缝隙。PWB可以补偿光纤中纤芯放置位置的不准确,允许连接各种类型和纤芯配置的光纤,可以实现多芯光纤和硅光子芯片高效的低损耗耦合。InP光源和硅光子芯片通过PWB相连接,也是迄今为止已经证明的最有效的接口。本次课题实验使用CST Microwave Studio软件对采用了PWB的芯片与芯片之间的互连结构进行了模型的创建和数据的仿真。PWB可以实现芯片到芯片和光纤到芯片的连接,还可以进一步将其推广到混合多芯片组件的通用集成平台,它可以有效地结合不同集成平台的优势,实现跨芯片的低损耗单模连接,而且不需要芯片精确的机械对准,使它非常适合大批量工业化自动生产。
关键词:光子引线键合PWB,光学互连,光学集成,CST Microwave Studio
Abstract
In the optical coupling technology of micro-nano photonic chips, there is a new technology, photonic wire bonding (PWB), which can optimize the design and implementation process of flexible waveguides. Efficient optical coupling can be achieved by connecting a flexible photonic wire to the active/passive chip in/out or single mode fiber at the wave-in/out of the modulator chip. The shape of the PWB is adapted to the actual position of the integrated waveguide face, so high precision alignment of the optics is no longer required and the spatial interconnect density is not limited by the standard fiber diameter. Therefore, PWB can be used to connect the gaps between nanophotonic circuits located on different chips. PWB can compensate for inaccuracies in the placement of cores in the fiber, allowing the connection of fibers of various types and core configurations, enabling efficient low-loss coupling of multicore fibers and silicon photonic chips. The InP source and the silicon photonic chip are connected via PWB and are the most efficient interface that has been proven to date. In this project, the CST Microwave Studio software was used to create the model and simulate the data of the interconnect structure between the chip and the chip using PWB. PWB can realize chip-to-chip and fiber-to-chip connection, and can be further extended to the general integration platform of hybrid multi-chip components, which can effectively combine the advantages of different integration platforms to achieve low-loss single-mode connection across chips. Moreover, it does not require precise mechanical alignment of the chip, making it ideal for high-volume industrial automated production.
KEY WORDS: photonic wire bonding PWB, optical interconnections, integrated optics, CST.
目 录
摘 要 Ⅰ
Abstract Ⅱ
第一章 绪论 1
1.1研究背景和现状 1
1.1.1研究背景 1
1.1.2光子引线键合PWB的基本概念 1
1.2本文的研究内容和结构安排 3
1.2.1本文的主要工作 3
1.2.2本文的结构安排 3
第二章 硅光子芯片和多芯光纤的互连 4
2.1硅光子芯片和光纤的互连技术 4
2.2互连结构设计 4
2.2.1光子引线键合PWB的轨迹 5
2.2.2光纤接口 5
2.2.3 SOI芯片接口 6
2.3光子引线键合PWB的制造 8
2.4本章小结 10
第三章 硅光子芯片和激光器的混合集成 11
3.1硅光子芯片和光源的集成技术 11
3.1.1光源集成的主要方法 11
3.1.2混合光子多芯片模块 12
3.2互连结构设计 13
3.3光子引线键合PWB制造 16
3.4本章小结 16
第四章 芯片间互连的设计与仿真 17
4.1芯片间互连技术 17
4.1.1互连结构设计 17
4.1.2光子引线键合PWB的制造 19
4.2软件平台介绍 21
4.3互连结构建模 22
4.4仿真设置依据 27
4.4.1电尺寸概念和划分 27
4.4.2电磁仿真算法 27
4.4.3求解器的设置 28
4.5传输性能的仿真分析 29
4.6本章小结 32
第五章 总结 34
参考文献 35
致 谢 37
- 绪论
1.1研究背景和现状
剩余内容已隐藏,请支付后下载全文,论文总字数:31070字
该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;