论文总字数:26858字
摘 要
近年来,超疏水材料在自清洁、防腐蚀、抗结冰、油水分离、流体减阻等应用领域发展迅速,层出不穷的新型超疏水材料也已走向工业生产,但其中内在的科学问题却一直悬而未决。本文将具有良好的非线性映射能力和优秀的泛化能力的神经网络与不同结构的超疏水表面相结合,探索内部机制复杂的润湿性理论和超疏水现象。
本课题首先利用新型高精度3D打印系统制备不同尺寸的圆柱体阵列超疏水固体表面结构,系统基于光与物质相互作用的非线性双光子吸收光聚合效应,是目前世界公认的精度最高的3D打印机,突破了传统方法制备超疏水表面的局限性。然后,用接触角测试仪测量水滴在不同微结构表面上的接触角,使用统计与数据分析的方法,研究了微结构的高度对后退接触角的影响。接着,使用人工神经网络对采集到的数据进一步分析,建立柱体直径、间距和高度与表观后退接触角的模型,可直接预测出不同表面上的液滴的后退角。最后,对模型可视化处理后,将固-液接触面百分比、接触线面密度和结构直径与间距的比值引入模型分别进行分析,并结合Cassie角和粘附力进一步探究,不同的理论模型的提出给超疏水表面液体的移动提供了多种思路。
关键词:超疏水,润湿性,微结构阵列,后退接触角,神经网络
ABSTRACT
In recent years, superhydrophobic surfaces have developed rapidly in numerous applications such as self-cleaning, anti-corrosion, anti-icing, oil-water separation, and fluid drag reduction. More and more superhydrophobic materials have been developed and put into industrial production. The inherent scientific problems, however, have been still unresolved. In this paper, neural networks with good nonlinear mapping ability and excellent generalization ability are combined with superhydrophobic surfaces of different structures to explore the complex wettability theory and superhydrophobic phenomenon of internal mechanism.
This work firstly uses a new high-precision 3D printing system to prepare superhydrophobic solid surface structures of cylinder arrays of different sizes. The system, based on the nonlinear two-photon absorption photopolymerization effect of light and matter interaction, is recognized as the most accurate 3D printer in the world, breaking through the limitations of traditional methods for preparing superhydrophobic surfaces. Then, the contact angles of the water droplets on the surface of the different microstructures are measured by the contact angle meter, and the influence of the height of the microstructure on the receding contact angles is analyzed by statistical and data analysis methods. After that, the artificial neural network is used to further study the collected data to establish a model of cylinder diameter, spacing and height and apparent receding contact angle, which can directly predict the receding angle of droplets on different surfaces. Finally, after visualizing the model, the ratio of solid-liquid contact surface, contact line density and the ratio of structure diameter to spacing are introduced into the model for analysis, and combined with Cassie angle and adhesion for further discussion. The proposal of different theoretical models provides a variety of ideas for the movement of superhydrophobic surface liquids.
KEY WORDS: superhydrophobic, wettability, microstructure array, receding contact angle, neural network
目 录
摘 要 II
ABSTRACT III
第一章 绪论 1
1.1引言 1
1.2表面润湿性 2
1.2.1静态接触角 2
1.2.2动态接触角及其测量 4
1.2.3动态接触角的影响因素 5
1.3 BP神经网络 6
1.4本课题的研究意义和研究内容 9
第二章 超疏水表面接触角实验设计 10
2.1超疏水阵列结构的制备 10
2.1.1结构模型 10
2.1.2实验设备与制备过程 10
2.2结构表面接触角的测量 12
2.2.1实验材料与设备 13
2.2.2测量过程 13
2.3实验数据 14
第三章 实验数据分析 20
3.1高度H对后退接触角的影响 20
3.2直径D与间距L对后退接触角的影响 21
3.2.1神经网络建模 21
3.2.2 模型可视化 22
3.2.3 结果与讨论 23
第四章 结论 28
参考文献 29
致 谢 31
第一章 绪论
1.1引言
北宋理学家周敦颐在《爱莲说》中写道“予独爱莲之出淤泥而不染,濯清涟而不妖”,从古至今,荷花一直被赋予了“圣洁”的寓意,从淤泥里生长起来却没有淤泥的污秽,一直保持着自身的洁净。这一独特的特性也不断激发着众人的兴趣,随着探索的不断深入,人们观察到荷叶表面的水滴以球体形式存在,而不是通过铺展或黏附荷叶表面来润湿它,一旦叶片表面略微倾斜时,叶片上的水滴很容易滚落,既从表面收集了污垢又不留任何润湿痕迹。人们用“荷叶效应(Lotus-effect)”来描述荷叶的这种自清洁性能。
荷叶表面上除了具有疏水的化学组分外,其微观结构也引发了广泛关注,随着表面科学技术和材料微纳米分析测试技术的发展,荷叶的微纳米结构得以清晰地展现在人们眼前。如图1.1所示,荷叶表面具有双层微观结构,由许多平均直径为5~9μm的乳突构成,每个乳突又是由平均直径为124.3±3.2nm的纳米结构分支组成[1]。荷叶表面的微米级的形态与纳米级蜡质原纤维的巧妙结合,使水滴的亲和力极低,实现超疏水性。
剩余内容已隐藏,请支付后下载全文,论文总字数:26858字
该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;