论文总字数:21493字
摘 要
随着科学技术日新月异的发展,太赫兹频段以其优良的特性以及尚未开发的潜在能量赢得了极大的关注。对于现有的电磁波频段的利用,100GHz左右的频段波长过长,不适用于精微设计,而几THz的频段的能量又过大,不能够很好地利用就会产生意外。因而,把发展的眼光放在太赫兹(0.1THz~2THz)频段就成为了一个十分重要的研究方向。
本文利用CST微波工作室TM软件,对隶属于太赫兹频段的850GHz频率的信号传输进行慢波结构设计。设计主要以曲折线为基本结构,通过CST软件的仿真模拟,找出最合适的器件尺寸结构,以达到预期传输效率和传输功率,尽可能降低传输损耗。
首先对850GHz频段信号进行简单测试,在基本结构,即基础微带线结构上,进行测试,找出较好的传输改进方向。结果表明,当结构模型微带线介质层厚度变小时,传输损耗会有所降低;改变微带线材质时,当增大其电导率时,传输损耗也会有所降低。在这里,对微带线进行双分,当采用不对称结构时,其传输损耗也会大大降低。接下来,进行单一单元曲折线设计,观察其群速度,相速度以及耦合阻抗与频率之间的曲线图,找出合适的尺寸。由于频率较高,得到的合适的尺寸相较于实际工业可达到水准更为精细,也相应的更加难以实现。最后,结合现有的设计结果以及发展现状,展望未来,开拓未来发展方向,为太赫兹频段的应用打下坚实的发明研究基础。
关键词:慢波结构,行波管(TWT),真空微电子学,太赫兹
Abstract
With the rapid development of science and technology, the terahertz band has received great attention with its excellent characteristics and potential energy that has not yet been developed. For the use of the existing electromagnetic wave band, the wavelength of the band around 100 GHz is too long to be applied to the subtle design, and the energy of the frequency band of several THz is too large, as a result, it cannot be well utilized and an accident will occur. Therefore, it has become a very important research direction to put the development perspective on the terahertz (0.1THz~2THz) frequency band.
This thesis uses CST software to design a meander-line slow-wave structure of 850GHz frequency signal transmission. Through the simulation solver of the CST software, the most suitable device size structure is found to achieve the expected transmission efficiency and transmission power, while the transmission loss is reduced as much as possible.
First, a simple test is performed on the 850 GHz band signal, which is the basic structure. To find a better direction of transmission improvement, several tests were performed. The results show that when the thickness of meander-line becomes smaller in the structural model, the transmission loss will become less. When the meander-line’s material is changed, the transmission loss will decrease. Also, when the conductivity of the meander-line increases, a less loss in transmission will show up. During this time, in order to get a better structure, double-divided meander-line comes up and while an asymmetrical structure is used, its transmission loss is also greatly reduced. Next, a single unit zigzag line design was performed to observe the group velocity, phase velocity, and the curve between the coupled impedance and frequency to find the appropriate size. As for the higher frequencies, the resulting suitable dimensions are more refined than the actual industry can achieve. Last but not the least, combined with the existing design results and development status, I am looking forward to a brighter future of traveling wave tube. With all these design, sooner or later, more and more researchers will open up the future development direction. As for further research, this lays a solid foundation for the research of the application of the terahertz band.
Keywords: slow-wave structure, traveling wave tube (TWT), vacuum microelectronics
目 录
摘要 ………………………………………………………………………………Ⅰ
Abstract ……………………………………………………………………… Ⅱ
第一章 绪 论 1
1.1 引言 1
1.2 太赫兹技术的优势及其应用 1
1.2.1 太赫兹波段的优势 1
1.2.2 太赫兹技术的应用及其前景 2
1.3 真空电子技术的历史进程 4
1.4 行波管基本工作原理简介 5
1.4.1 螺旋线行波管 6
1.4.2 耦合腔行波管 7
第二章 慢波结构介绍 9
2.1 曲折线慢波结构原理 9
2.2 折叠波导及其原理 10
2.3 螺旋线慢波结构及其原理 11
第三章 普通微带线以及双分器冷特性研究 13
3.1 普通微带线传输特性探究 13
3.2 微带线双分结构传输特性及其冷特性 17
3.3 小结 21
第四章 850GHz曲折线行波管性能的研究 21
4.1 单周期曲折线设计及其冷仿真特性 21
4.2 五十个周期曲折线冷特性 23
4.3 一百五十周期长曲折线冷特性 24
4.4 小结 24
第五章 总结与展望 26
致 谢 27
参考文献(References) 28
第一章 绪 论
1.1 引言
太赫兹波或者太赫兹射线,这一概念是在二十世纪八十年代中后期才被正式提出[1],在此之前,相关领域的科学家们都习惯性称其为远红外射线,因为其波长在0.03毫米到3毫米之间,处于微波与红外线之间的波段。但是在二十一世纪之前由于受到器材和技术的限制,有关于太赫兹波段的相关研究和实验都进展缓慢,实验数据也十分不理想,直到一系列新技术新材料的出现,太赫兹技术才得以大大推进,并随之掀起了太赫兹研究的洪流。由于太赫兹频段的优越特性,多国政府在二十一世纪初便将太赫兹技术列为国家重点发展项目,我国也于2005年召开“香山科技会议”,专门邀请行业内有影响力的院士,探讨未来太赫兹在我国的发展道路。
目前,太赫兹研究领域作为一个前沿的交叉学科领域,引起了广泛关注与设计应用,在此条件下,这一领域的迅猛发展,为技术创新和国家综合国力的提升创造了一个飞跃的机遇。只有抓住这一机遇,就能够进一步缩小国际间科研差距,为未来国家安定繁荣富强,创造良好的科技前提。
剩余内容已隐藏,请支付后下载全文,论文总字数:21493字
该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;