论文总字数:30150字
摘 要
本文主要设计了两种80GHz的低压功率放大器。
首先对60nm CMOS工艺下的晶体管尺寸进行了最优化分析,利用GoldenGate仿真软件通过负载牵引loadpull和源牵引sourcepull确定了指叉宽度finger width和指叉数fingers number。然后利用最优化晶体管尺寸进行电路设计,分别设计了一个宽带放大器和一个窄带放大器。其中,宽带功率放大器实现了80GHz高频率下10GHz的宽带,并且实现了0.8V供电电压的低功耗,但输出功率不够高。窄带功率放大器实现了1.1V的低供电电压,一定的输出功率及增益,但较低。本文最后部分简要分析了130nm SiGe BiCMOS工艺下设计功率放大器的可行性,通过仿真确定了该工艺下的HBT管的最优结构,并将该HBT管与60nm 工艺下的nMOSFET管进行对比,发现nMOSFET的小信号增益和更高,成本更低,更满足80GHz低压功率放大器的设计。
关键词:80GHz,宽带功率放大器,窄带功率放大器,输出功率,增益,
W-Band Low-Voltage Power Amplifier IC Design in 65nm CMOS
This thesis focuses on designing two kinds of 80GHz low-voltage power amplifiers.
Firstly, the transistor size in 60nm CMOS technology was optimized by using GoldenGate RF simulation tool, finger width and fingers number were determined by load-pull and source-pull simulation. Then, a wide-band power amplifier and a narrow-band power amplifier were designed respectively based on the optimized transistor size. The wide-band power amplifier achieved a broadband of 10GHz at 80GHz and a low power supply voltage of 0.8V, but the output power was not high enough. The narrow-band power amplifier achieved a low supply voltage of 1.1V, enough output power and gain, but PAE was relatively low. The last chapter briefly analyzed the feasibility of the power amplifier design in 130nm SiGe BiCMOS technology. In this chapter , the optimal structure of HBT was determined by simulation tool at first. After that, a performance comparison between HBT and CMOS was done, which concluded that transistor in 60nm CMOS technology was more suitable than one in 130nm SiGe BiCMOS for 80GHz power amplifier design because of the high small-signal gain, high PAE and low production cost.
KEY WORDS: 80GHz, wide-band power amplifier, narrow-band power amplifier, output power, power gain, PAE
目 录
摘要 ………………………………………………………………………………………Ⅰ
Abstract …………………………………………………………………………………Ⅱ
第一章 绪论 ………………………………………………………………………………1
1.1 引言 ……………………………………………………………………………1
1.2 W波段功率放大器 …………………………………………………………………2
第2章 功率放大器基本原理 …………………………………………………………………4
2.1 功率放大器的基本模型 ……………………………………………………………4
2.2 功率放大器的分类 ………………………………………………………………5
2.2.1 线性放大器 ……………………………………………………………5
2.2.2 开关放大器 ……………………………………………………………6
2.3功率放大器主要性能指标 …………………………………………………………7
2.3.1 输出功率 ……………………………………………………………7
2.3.2 效率 ……………………………………………………………7
2.3.3 稳定性 ……………………………………………………………8
2.3.4 线性度 ……………………………………………………………8
2.4 大信号和小信号设计 …………………………………………………………9
2.5 增益与输出功率相权衡的匹配网络设计 …………………………………………11
第3章 CMOS技术 ……………………………………………………………………………13
3.1 低供电电压 ……………………………………………………………………13
3.2 65纳米CMOS技术浅谈 ……………………………………………………………13
3.3 晶体管设计 ……………………………………………………………………17
3.3.1 指叉宽度设计 ……………………………………………………………17
3.3.2 指叉数设计 ……………………………………………………………21
第4章 功率放大器的设计 ……………………………………………………………………23
4.1 宽带功率放大器设计 ……………………………………………………………23
4.2 窄带功率放大器设计 ……………………………………………………………27
第5章 其他工艺放大器的设计 ………………………………………………………………34
5.1 简述SiGe HBT工艺 ………………………………………………………………34
5.2 SiGe HBT的优化 …………………………………………………………………39
5.3 比较HBT 与nMOSFET ………………………………………………………………41
结论 ………………………………………………………………………………………47
致谢 ………………………………………………………………………………………48
参考文献(References) ……………………………………………………………………48
第一章 绪论
剩余内容已隐藏,请支付后下载全文,论文总字数:30150字
该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;