论文总字数:25684字
摘 要
本文旨在研究神经信号处理中的阈上随机共振研究。
噪声常常会干扰信号的传输,然而,噪声可以通过称之为随机共振的非线性效应使系统的信号传输性能起到增强的作用。基于随机共振的信号处理方法以及对神经系统信号处理机制的认识也在发展中。但是已有的随机共振研究,主要针对输入信号低于系统阈值的阈下情况,对于阈上信号,噪声仍然被认为有害于系统的信号传输性能。在一定条件下,噪声同样能增强系统对阈上信号的传输。这一研究把传统的随机共振扩展到了阈上的情况,我们称之为阈上随机共振。这种阈上随机共振,在通信、神经信号处理等领域有着重要的意义和应用前景。
在这篇论文中,我们提出听觉系统中的噪音可能会起到有益作用。实验显示在许多动物(包括人类)中起初级电传导器作用的神经元在生物相关噪音水平下会显示随机共振。相比于由热平衡布朗运动引起的扰动,在固定位置上纳米级的扰动会明显增强细胞对微弱周期性刺激的响应。我们使用一个基于电传导阈值图像的模型来探索这个现象。
关键词:布朗运动;耳蜗;听力;神经元
Noise stochastic resonance in the auditory neurons
Abstract
This paper aims to study stochastic resonance study neural signal processing threshold.
Noise often interfere with signal transmission, however, the noise can be non-linear effect called stochastic resonance signal transmission performance of the system to play an enhanced role. The signal processing method based on stochastic resonance as well as the nervous system of signal processing knowledge of the mechanisms are also developing. But the existing stochastic resonance studies, mainly for the input signal is below the lower threshold system the threshold value, the threshold signal, noise is still considered to be detrimental to the system of signal transmission performance. Under certain conditions, the noise can also enhance the system to transmit signals to the threshold. The study of stochastic resonance in the tradition extends to the situation on the threshold, we call on the threshold stochastic resonance. Such a threshold stochastic resonance, in the field of communications, neural signal processing has important significance and application prospects.
In this paper, we propose a noise in the auditory system may play a useful role. Experiments show that plays the role of the primary electrical conductor neurons in many animals (including humans) are displayed in the stochastic resonance in the biological relevance of the noise level. Compared to the disturbance caused by the thermal equilibrium Brownian motion in a fixed position on the nano-scale disturbance will be significantly enhanced cellular response to weak cyclical stimulus. We use a model based on electrical conduction threshold image to explore this phenomenon.
Key words: Brown movement; cochlea; hearing; neuron
目 录
摘要 ………………………………………………………………………………Ⅰ
Abstract ………………………………………………………………………………Ⅱ
第一章 绪论…………………………………………………………………………1
1.1 听觉机制研究的历史………………………………………………………1
1.2 随机共振……………………………………………………………………3
1.3 听觉系统结构………………………………………………………………4
1.3.1外耳…………………………………………………………4
1.3.2中耳…………………………………………………………5
1.3.3内耳…………………………………………………………6
1.3.4耳蜗…………………………………………………………6
1.3.5基底膜与柯蒂式器…………………………………………6
第二章 噪声在听觉神经元中的随机共振…………………………………………7
2.1 引言…………………………………………………………………………7
2.2 神经元细胞模型……………………………………………………………8
2.3 决定模型参数………………………………………………………………14
2.4 噪声效应对模型行为的影响………………………………………………16
2.5小结…………………………………………………………………………17
致谢 ………………………………………………………………………………18
参考文献(References) …………………………………………………………19
第一章 绪 论
- 听觉机制研究的历史
听觉是人类重要的感官之一,它让人类有了能感受环境的能力,所以它是科学家重点研究的对象。而在哺乳动物中,听觉系统的内部处理机制位于头骨内部,被身体坚硬的骨头所封闭,此外它还包含耳蜗。因此一直以来听觉系统的研究进展艰难。在 15 世纪,人们就注意到了鼓膜和三块听小骨中的两块。然而在过了将近300年后才由 Domenico Cotugno 发现内耳充满淋巴液。在这半个世纪后,Ernst Reissner 才辨别出有两种截然不同的液体存在于耳蜗中。而随着19世纪微观技术的发展,才促使 Alfonso Corti 成功地描述了内耳组成细胞:螺旋器(柯替器)、柱细胞(pillar of Corti)、柯替隧道(tunnel of Corti)、外毛细胞、盖膜(Corti′s membrane)和基底膜[1].
剩余内容已隐藏,请支付后下载全文,论文总字数:25684字
该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;