船用高效炉膛的冷态空气动力场的试验研究

 2022-06-12 08:06

论文总字数:26254字

摘 要

本课题所属项目“新型垃圾焚烧系统研制及示范应用”。船用焚烧炉是以焚烧船舶废弃物为主要目的而设计的船上防污染设备.利用高温氧化原理.以一定的过剩空气量与被处理的废弃物在燃烧室内进行氧化燃烧反应。该设备释放了船上垃圾、污油的存放空间.尽可能减少船舶废弃物对海洋环境的影响。炉膛是船用焚烧炉设备运行.供固体废弃物及液体废弃物燃料燃烧的区域.炉膛的作用是稳定燃烧室温度.保证燃料充分燃烧氧化分解.并使炉膛出口烟气温度冷却到安全工作的允许温度。

高效炉膛的设计计算书依据给出的主要技术参数.先通过计算燃料的低位发热量及焚烧炉处理量确定型号焚烧炉的热容量;柴油最大的消耗量以焚烧处理50kg/炉固体垃圾时核算柴油消耗量;根据燃烧器布置及火焰尺寸需要.选取截面为腰形的炉膛.依次计算炉膛的容积、炉膛的截面积、炉膛的高度来确定炉膛的实际容积;计算出固体垃圾、船用柴油、污油这三种物料的物料低位发热量、单位理论空气耗量、每小时理论空气耗量、实际空气耗量、单位燃烧生成烟气量、每小时燃烧生成烟气量、1000℃时每小时生成气量.并确定烟气的停留时间和启动扫气次数;由炉膛容积计算布置圆形炉膛、方形炉体结构.进行不稳定态热平衡分析和稳定态热平衡分析;在进行烟道计算时.确定引风机300℃时流量、安装焚烧炉的最小舱室供风量、烟气温度、排烟口直径、引风机风压、引风机电机功率;计算出蒸发舱底水理论值并结合实际燃烧过程选取舱底水处理量设计值;对污油管路和舱底水管路进行管径计算;计算污油泥服务柜的有效容积和舱底水柜的有效容积.并计算对应的电加热所需功率来选取对应的电加热器;最后计算废气热能回收理论利用率并结合实际情况选取低温废气热能回收率。按照相似原理.搭建垃圾焚烧炉高效炉膛冷态试验装置。

关键词:船用焚烧炉.高效炉膛.冷态空气动力场

Abstract

The project “Project Development and Demonstration Application of New Type Waste Incineration System” belongs to this topic. The marine incinerator is a shipboard pollution prevention device designed with the main purpose of incineration of marine waste. Using the principle of high-temperature oxidation, an oxidative combustion reaction takes place in the combustion chamber with a certain amount of excess air and the waste to be treated. The equipment frees up space for storing garbage and oil onboard and minimizes the impact of ship's waste on the marine environment. Furnace is an area where ship incinerator equipment is operated to burn solid waste and liquid waste fuel. The function of furnace is to stabilize combustion chamber temperature, ensure full combustion of fuel, oxidize and decompose, and allow flue gas temperature at hearth to be cooled to safe working permit. temperature.

According to the main technical parameters given in the design calculation book of the high-efficiency furnace, the heat capacity of the model incinerator is firstly determined by calculating the low calorific value of the fuel and the incinerator treatment capacity; the maximum consumption of diesel is calculated when incinerating 50kg/solid waste of the furnace. Consumption; according to the burner arrangement and flame size requirements, choose a chamber with a waist profile, calculate the volume of the furnace, the cross-sectional area of the furnace, and the height of the furnace in order to determine the actual volume of the furnace; calculate solid waste, marine diesel, and pollution The low calorific value of oil, the theoretical air consumption per unit, the theoretical air consumption per hour, the actual air consumption, the amount of flue gas generated per unit of combustion, the amount of flue gas generated per hour of combustion, and hourly generation at 1000°C Gas volume, and determine the residence time of the flue gas and the number of scavenging starts; the circular hearth and the square furnace structure are arranged and calculated from the volume of the hearth to perform the instable thermal equilibrium analysis and the steady state heat balance analysis; during the flue calculation, the determination is made Flow rate of fan at 300°C, minimum cabin air supply for installation of incinerator, temperature of flue gas, diameter of exhaust fume outlet Induced fan wind pressure, induced fan motor power; calculate the theoretical value of evaporation bilge water and select the design value of bilge water treatment in combination with the actual combustion process; The effective volume of the cabinet and the effective volume of the bilge tank, and calculate the corresponding electric heating required power to select the corresponding electric heater; Finally, calculate the theoretical utilization of waste heat energy recovery and select the low-temperature exhaust gas heat recovery rate in light of the actual situation. According to similar principles, a high-efficiency furnace test apparatus for waste incinerators was built.

KEY WORDS: Marine Incinerator.Efficiency Furnace.Cold Aerodynamics Field High

目 录

摘要 I

ABSTRACT II

第一章 绪论 1

1.1研究背景 1

1.2国内外研究现状 1

1.2.1国外船用焚烧炉简介 1

1.2.2国产焚烧炉简介 2

1.3研究内容 2

第二章 高效炉膛的设计计算 4

2.1设计思想 4

2.2 执行规范、标准 4

2.3 主要技术参数 4

2.3.1 定义 4

2.3.2 主要技术参数 4

2.4. 燃料低位发热量计算 5

2.5. 焚烧炉处理量计算 5

2.6. 柴油消耗量核算 6

2.7. 炉膛容积设计计算 6

2.7.1 炉膛容积计算 7

2.7.2 炉膛截面积计算 7

2.7.3 炉膛高度计算 7

2.7.4炉膛实际容积计算 7

2.8.烟气计算 7

2.8.1 燃料单位理论空气消耗量 7

2.8.2 每小时理论燃烧空气耗量 8

2.8.3 燃料实际空气耗量 8

2.8.4 单位燃烧生成气量Vα 8

2.8.5 每小时燃烧生成气量 9

2.8.6 1000℃时每小时燃烧生成气 9

2.8.7 烟气停留和扫气 9

2.8.7.1 烟气停留时间 9

2.8.7.2启动扫气次数 10

2.9. 热平衡分析 10

2.9.1 不稳定态热平衡分析 10

2.9.1.1单位燃料有用热量计算 10

2.9.1.2炉体升温时间 10

2.9.2 稳定态热平衡分析 11

2.10. 烟道计算 12

2.10.1 烟气流量 12

2.10.2 舱室供风量 12

2.10.3 烟气温度 12

2.10.3.1 炉膛烟气出口烟气温度. 12

2.10.3.2 炉膛烟气出口2.5m处烟气温度 13

2.10.4 排烟口直径 13

2.10.5 烟道压力损失 13

2.10.5.1烟气流速 13

2.10.5.2 烟气密度 13

2.10.5.3 烟道压力损失 13

2.10.6 引风机的电机功率 14

2.11. 舱底水喷射量计算 14

2.12.管路管径计算 15

2.12.1 污油管路 15

2.12.2 舱底水管路 15

剩余内容已隐藏,请支付后下载全文,论文总字数:26254字

您需要先支付 80元 才能查看全部内容!立即支付

该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;