电致变色型储能材料的制备与性能研究

 2022-05-14 19:37:20

论文总字数:35079字

摘 要

电致变色超级电容器是一种新型的新型的储能器件,它既进行充放电,还可以产生颜色变化能够实时的反应出器件的能量储存状况。本论文围绕着MnO2电聚合聚苯胺和钨钼氧化物(W0.71Mo0.29O3-x)这两种具有电致变色功能的赝电容材料,对钨钼氧化物(W0.71Mo0.29O3-x)、PANI/MnO2薄膜电极及二者组成的器件的电化学性能深入研究,主要结果和结论如下:

1.通过电化学聚合的方法,得到PANI/MnO2薄膜电极。PANI材料常见且易于制得,比电容合适但是没有良好的稳定性,通过电聚合MnO2,使得电极拥有良好的比电容、高的变色效率与变色的灵敏度等特性,还兼容稳定性。

2.通过喷涂的方式制得钨钼氧化物薄膜电极,钨钼氧化物具有合成稳定,循环稳定性高,可制备成溶液等特点,钨钼氧化物具有极好的颜色匹配度与电容匹配度,并且采用喷涂处理,这样在ITO玻璃表面可以形成多孔结构,这样的结构对于电极的离子电子的转移有很大帮助,很大的提升电化学性能。

3.钨钼氧化物和PANI/MnO2电极,具有着色褪色同步,所用电解质相同,具有很高的的电化学匹配度。由钨钼氧化物电极、PANI/MnO2薄膜电极和PC-PMMA-LiClO4凝胶电解液组成的器件在其颜色变化在2000次循环之后没有明显衰退。作为储能器件,它比同类器件相比具有较高的能量密度。

4.对钨钼氧化物和PANI/MnO2的电致变色机理进行了全方面的分析,这样可以为电致变色超级电容器的设计、电容器正负极的材料选择与制备、电解质的选择与制备提供思路,有助于高性能器件制作。

5.PEDOT作为一种阴极电致变色材料,具有转换效率高,导电性好等优势。然而,其颜色对比度还有待提高。近年来不少研究已经证明了聚合物和石墨烯复合的可行性。选择将PEDOT和GO通过原位电聚合的方法制备了PEDOT/GO复合材料。研究了GO/PEDOT作为电极材料的电化学性能。

关键词:超级电容器;电致变色;钨钼氧化物;二氧化锰;

ABSTRACT

The electrochromic supercapacitor we studied is a new type of energy storage device. It can not only charge and discharge, but also generate color changes, which can reflect the energy storage status of the device in real time. This paper focuses on MnO2 electropolymerization polyaniline and tungsten molybdenum oxide (W0.71Mo0.29 o3-x), two pseudocapacitive materials with electrochromic function, to conduct in-depth research on the electrochemical properties of tungsten molybdenum oxide (W0.71Mo0.29 o3-x), PANI/MnO2 thin film electrode and the devices composed of them. The main results and conclusions are as follows:

1.PANI/MnO2 thin film electrode was obtained by electrochemical polymerization. PANI material is common and easy to make, suitable for capacitor ratio but without good stability. By electropolymerization of MnO2, the electrode has good characteristics of capacitor ratio, high chromogenic efficiency and chromogenic sensitivity, as well as compatibility and stability.

2.We obtained by means of spraying molybdenum oxide thin film electrode, tungsten molybdenum oxide with synthetic stability, high cycle stability, etc., can be prepared into solution of molybdenum oxide has excellent color matching degree and capacitance matching degree, and with spray processing, so porous structure can be formed in the surface of ITO glass, this structure are of great help for electrode ion electron transfer, great improve the electrochemical properties.

3.Tungsten molybdenum oxide and PANI/MnO2 electrode have the same color fading synchronization, the same electrolyte and high electrochemical matching degree. A device consisting of a tungsten molybdenum oxide electrode, a PANI/MnO2 thin film electrode, and a pc-pmma-liclo4 gel electrolyte showed no significant decline in color change after 2000 cycles. As an energy storage device, it has higher energy density than similar devices.

4.The electrochromic mechanism of tungsten molybdenum oxide and PANI/MnO2 is analyzed comprehensively, which can provide ideas for the design of electrochromic supercapacitors, the material selection and preparation of capacitor anode and cathode, and the selection and preparation of electrolytes, and contribute to the manufacture of high-performance devices.

5.As a cathode electrochromic material, PEDOT has the advantages of high conversion efficiency and good conductivity. However, its color contrast still needs to be improved. In recent years, a number of studies have demonstrated the feasibility of polymer and graphene composite. PEDOT/GO composite materials were prepared by in situ electropolymerization of PEDOT and GO. The electrochemical properties of GO/PEDOT as electrode materials were studied.

Key words: Supercapacitor,Electrically induced discoloration,Tungsten molybdenum oxide,

Manganese dioxide

目 录

第一章 绪论 1

1.1引言 1

1.2超级电容器概述 1

1.2.1 超级电容器发展历程及研究现状 1

1.2.2 超级电容器的原理 2

1.2.3 超级电容器的结构 2

1.2.4 超级电容器分类 2

1.3 电致变色器件概述 3

1.3.1 电致变色器件发展历程及研究现状 4

1.3.2 电致变色器件结构 4

1.3.3 电致变色材料及分类 5

1.4 超级电容器与电致变色器件的结合 6

1.5 本论文的研究内容 7

1.5.1 选题思路 7

1.5.2 研究内容 7

第二章 电极的制备与表征 9

2.1引言 9

2.2 实验仪器及试剂 10

2.2.1主要实验仪器 10

2.2.2主要实验试剂 10

2.3电化学技术 11

2.3.1三电极体系 11

2.3.2三电极体系的电化学性能表征体系 12

2.3.3 三电极体系的计算方法 13

2.4 PC-PMMA-LiClO4凝胶电解质 13

PC-PMMA-LiClO4凝胶电解质的制备 13

2.5 PANI/MnO2薄膜电极的制备与表征 14

2.5.1PANI/MnO2薄膜电极的制备 14

2.5.2 PANI/MnO2薄膜电极电化学表征 14

2.6钨钼氧化物(W0.71Mo0.29O3-x)电极的制备与表征 15

2.6.1钨钼氧化物(W0.71Mo0.29O3-x)电极的制备 15

2.6.2 钨钼氧化物(W0.71Mo0.29O3-x)电极的电化学表征 16

2.7 PEDOT/GO电极的制备与表征 18

2.7.1 PEDOT/GO电极的制备 18

2.7.2 PEDOT/GO电极的表征 18

第三章 不对称超级电容器(ASC)的组装与表征 19

3.1引言 19

3.2 不对称超级电容器(ASC)的组装 19

3.3 电致变色超级电容器的表征 20

3.3.1钨钼氧化物(W0.71Mo0.29O3-x)-PANI/MnO2器件的表征 20

3.3.2PEDOT/GO-PANI/MnO2器件的表征 21

第四章 总结与展望 23

4.1总结 23

4.2展望 24

参考文献 25

致谢 28

第一章 绪论

1.1引言

剩余内容已隐藏,请支付后下载全文,论文总字数:35079字

您需要先支付 80元 才能查看全部内容!立即支付

该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;