论文总字数:19898字
摘 要
将石墨相氮化碳化合物(g-C3N4),活化的g-C3N4(O-g-C3N4)和聚多巴胺修饰的g-C3N4(PDA@O-g-C3N4)纳米片添加到聚乙烯醇(PVA)基质中,PVA和g-C3N4纳米片之间的非选择性聚合物/无机界面通道可分别通过氢键,刚性和柔性的化学键调节。在75 ℃下对90 wt.%乙醇水溶液脱水实验表明,随着聚合物/无机界面之间的结合力的增加,从氢键(CPVA-g-C3N4)到柔性化学键(CPVA-PDA@O-g-C3N4),膜总通量从4634降至2328 g/(m2h),分离因子从32.4增加至57.9。与纯交联PVA膜(CPVA)(总渗透通量和分离因子分别为2325 g/(m2h)和18.7)相比,加入g-C3N4,O-g-C3N4和PDA@O-g-C3N4均可导致CPVA膜的分离性能增加。此外,由于g-C3N4、O-g-C3N4和PDA@O-g-C3N4纳米片的有序排列以及这些纳米片与PVA和琥珀酸之间的相互作用,复合膜表现出较高的抗溶胀性和机械稳定性。关键词:渗透汽化脱水,水选择性,聚多巴胺,石墨相氮化碳,聚乙烯醇
Abstract: Highly water-selective hybrid pervaporation membranes with excellent water/ethanol separation performance and superior water channels were fabricated by incorporating graphitic carbon nitride (g-C3N4), activated g-C3N4 (O-g-C3N4) and polydopamine modified g-C3N4 (PDA@O-g-C3N4) nanosheets into poly(vinyl alcohol) (PVA) matrix. The nonselective polymer/inorganic interface channels between PVA and g-C3N4, O-g-C3N4 and PDA@O-g-C3N4 in hybrid membranes were controllable constructed through hydrogen bonds, rigid and flexible chemical bonds, respectively. The membrane performances were tested in the pervaporation (PV) process for the dehydration of 90 wt % ethanol/water mixtures at 75 °C. The results revealed that with the increase of binding force among polymer/inorganic interface, from hydrogen bonds (CPVA-g-C3N4), to rigid (CPVA-O-g-C3N4) and flexible chemical bonds (CPVA-PDA@O-g-C3N4), the total flux decreased from 4634 to 2328 g/(m2h) and the separation factor increased from 32.4 to 57.9. It is implied that the nonselective polymer/inorganic interface channels were controlled successfully. Meanwhile, compared with the pure cross-linked PVA (CPVA) membrane(total flux 2325 g/(m2h) and separation factor 18.7), incorporation of g-C3N4, O-g-C3N4 and PDA@O-g-C3N4 could all lead to an increase of surface hydrophilicity of the CPVA membranes along with an increase in membrane tortuosity and membrane water-selective channels that was favorable to the selective permeation of water molecules. Namely, these new hybrid membranes can break the “trade-off effect” effectively. Moreover, due to the ordered alignment of g-C3N4, O-g-C3N4 and PDA@O-g-C3N4 nanosheets and the strong interfacial interactions among these nanosheets, succinic acid (Sa) and the PVA matrix, the hybrid composite membranes showed both high swelling resistance and mechanical stability.
Keywords: Pervaporation dehydration, water-selective, polydopamine, graphitic carbon nitride, poly(vinyl alcohol)
目录
1 前言 3
1.1 渗透汽化简介 3
1.2 基本分离原理 3
1.3 渗透汽化脱水膜 4
1.3.1 高分子分离膜的改性 4
1.3.2 渗透蒸发脱水膜的制备 4
2 实验 6
2.1 材料 6
2.2 合成g-C3N4和g-C3N4的改性 6
2.3 复合膜的制备 7
2.4 表征 7
3 结果与讨论 8
3.1 g-C3N4和修饰的g-C3N4纳米片的制备和表征 8
3.2 复合膜的制备与表征 10
3.3 膜性能 15
3.3.1 热性能 15
3.3.2 渗透蒸发性能 16
3.4 膜的长期运行稳定性 18
结论 20
参考文献 21
致谢 24
1 前言
1.1 渗透汽化简介
渗透汽化过程(Pervaporation, 简称PV, 国内又称为“渗透蒸发”) 是一种新型的膜分离过程, 是利用混合液中各组分被高分子膜选择吸附溶解, 及其在膜中扩散速度的不同, 通过渗透与蒸发将各组分分开, 从而分离或富集有机混合物中的某一组分。渗透汽化技术在石油化工、医药、食品、环保等工业领域中具有广阔的应用前景, 是目前处于开发期和发展期的技术, 国际学术界的专家们称之为21世纪最有前途的高技术之一。
剩余内容已隐藏,请支付后下载全文,论文总字数:19898字
该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;