论文总字数:25494字
摘 要
:采用密度泛函理论(DFT)基于B3LYP/6-311 G**、B3LYP /6-311G**两种计算方法对实验合成的偶氮苯系列衍生物的分子结构进行了优化,探讨了具有不同取代基的偶氮苯衍生物的红外光谱(IR),紫外光谱(UV),前线分子轨道及非线性光学(NLO)性质,结果表明偶氮苯衍生物分子具有很好的共轭性,N=N双键在分子中起到了很好的电子传递作用,分子所呈现的极性较大。通过对比发现,具有供电子基-OCH3的化合物的NLO 系数明显高于Cl-取代基的化合物。同时对化合物的IR光谱进行了归属分析。关键词:偶氮苯衍生物,非线性光学性质,DFT
Abstract: The molecular structure of the experimentally synthesized azobenzene derivatives were optimized by using density functional theory (DFT) based on two methods of B3LYP/6-311 G**、B3LYP /6-311G**. And we discussed the infrared spectrum(IR), ultraviolet spectrum(UV), frontier molecular orbital and nonlinear optical (NLO) of the Azobenzene derivatives with different substituents. The results show that azobenzene derivatives have good conjugation, and N=N double bond in the molecule plays a very good electron transfer. The molecules present a large polarity. By comparison, we find that the nonlinear optical coefficient of the compound with electron donating group -OCH3 was significantly higher than that with Cl- substituents. At the same time, the IR spectrum of the compound was analyzed.
Keywords: azobenzene derivative, nonlinear optical properties, dft
.
目 录
1 前言 4
1.1 非线性光学材料的研究现状及应用前景 4
1.2 偶氮苯及其衍生物的非线性光学性质研究 4
2 计算方法 4
3 结果与讨论 5
3.1 分子几何构型 5
3.2 红外光谱 10
3.2.1 C-H振动 14
3.2.2 苯环及杂芳环的骨架振动 14
3.2.3 C-O伸缩振动 15
3.3 前线分子轨道分析 15
3.4 非线性光学性质 17
结论 19
参考文献 21
致谢 22
1 前言
1.1 非线性光学材料的发展及应用前景
非线性光学是当代光学领域的一部分,其探究的是物质在激光这样的强相干光束照射下产生响应,而使折射率等光学现象发生变化的现象。1960年代,弗兰肯等人用红宝石激光束所得到的强光束通过石英晶体时产生了二次谐波,而基频光频率是光波频率的1/2,首次发现了倍频现象[1-3]。这一发现开创了非线性光学及其物质载体的研究范畴。通过研究我们发现,具有非对称的电荷分布、大的π电子共轭体系、大的极化率的分子构成的物质即可作为非线性光学材料。可以作为非线性光学材料的晶体一般有几种:无机晶体、有机晶体、无机-有机杂化晶体、金属有机晶体。无机晶体中,KDP 型晶体、KTP型晶体、钙钛矿型晶体、沸石分子筛基材料、玻璃非线性光学材料、半导体、硼酸盐晶体等具有晶体纯度高、各项异性、稳定的性质,被广泛用于非线性光学材料[4]。有机晶体因其具有结构多样化、非线性极化率高、可变性强、光学响应速度快[5-7]等优点,引起化学工作者们的注意,从而被探索研究,广泛应用于非线性光学材料[8]。
1.2 偶氮苯及其衍生物作为非线性光学材料的研究
偶氮苯类化合物属于芳香族含氮物,具有可进入显色光区的π电子,是应用最广、颜色种类最多的一种合成染料。偶氮苯在强烈的光照条件下可翻转成顺式,而在一定条件下又能可逆地翻转成反式,这种光致异构的现象受到广泛关注,并被应用于分子光控开关[9]、全息记录器件、分子机器人等领域。通过研究我们发现偶氮苯类化合物存在着能使电子自由流动的N=N,从而使其容易产生NLO效应[10]。曾艺、潘志华等人实验合成了偶氮类衍生物azo12-MO,兼有甲基橙和液晶类聚合物azo12的特点,通过测算发现其非线性光学性质要优于甲基橙azo12[11]。蒋爱国等人采用量子化学方法探讨了2-氨基噻唑偶氮苯衍生物的二阶非线性光学(NLO) 性质[12],本文于李巍巍实验合成的2,4-二氯-6-偶氮苯氧基-1,3,5均三嗪(L1)[13]与2,4-二甲氧基-6-偶氮苯氧基-1,3,5均三嗪(L2)基础上,采用DFT理论将分子构型优化,从理论上研究其分子结构和光学性质关系,分析不同基团对其NLO性质产生的影响。
2 计算方法
本文采用密度泛函(DFT)B3LYP方法,于6-311 G**、6-311G**两种基组上对分子进行几何构型的优化与计算,得到具有稳定构型的结构。构型优化是理论计算中最重要的步骤之一。计算分两步进行,第一步采用Hyperchem 6.0软件包建立化合物的初始构型,用MM 分子动力学对几何构型进行优化,当分子处于最低能量时即默认为收敛值。第二步,将优化结果采用DFT B3LYP方法分别在6-311 G**和6-311G**基组上进行优化处理。同样的,分子HOMO、LUMO轨道能量与跃迁和分子极化率β值的计算都是基于以上方法。电子性质的计算采取含时密度泛函理论TD-DFT方法。所有计算都在Gaussian 09W 程序中完成。
3 结果与讨论
3.1 分子几何构型
图1 L1分子的优化几何结构
图2 L2分子的优化几何结构
表1 L1、L2分子计算所得键长、键角、及二面角
L1 | L2 | |||||
B3LYP | 6-311 G** | 6-311G** | 6-311 G** | 6-311G** | ||
R(1,2) | 1.3921 | 1.3913 | R(1,2) | 1.3922 | 1.3914 | |
R(1,3) | 1.3934 | 1.393 | R(1,3) | 1.3934 | 1.3930 | |
R(1,4) | 1.0839 | 1.0838 | R(1,4) | 1.0839 | 1.0839 | |
R(2,5) | 1.3991 | 1.3987 | R(2,5) | 1.3991 | 1.3985 | |
R(2,7) | 1.0836 | 1.0834 | R(2,7) | 1.0837 | 1.0834 | |
R(3,6) | 1.3991 | 1.3985 | R(3,6) | 1.3989 | 1.3984 | |
R(3,8) | 1.0842 | 1.0842 | R(3,8) | 1.0842 | 1.0842 | |
R(5,9) | 1.4038 | 1.4032 | R(5,9) | 1.4037 | 1.4031 | |
R(5,11) | 1.4181 | 1.4169 | R(5,11) | 1.4187 | 1.4178 | |
R(6,9) | 1.3877 | 1.3868 | R(6,9) | 1.3879 | 1.3870 | |
R(6,10) | 1.0843 | 1.0843 | R(6,10) | 1.0844 | 1.0843 | |
R(9,12) | 1.0819 | 1.0817 | R(9,12) | 1.0820 | 1.0817 | |
R(11,13) | 1.2522 | 1.2541 | R(11,13) | 1.2526 | 1.2538 | |
R(13,14) | 1.4188 | 1.4157 | R(13,14) | 1.4175 | 1.4165 | |
R(14,15) | 1.3984 | 1.3954 | R(14,15) | 1.3989 | 1.3985 | |
R(14,16) | 1.4035 | 1.4042 | R(14,16) | 1.4039 | 1.4034 | |
R(15,18) | 1.3911 | 1.3931 | R(15,18) | 1.3908 | 1.3899 | |
R(15,20) | 1.0832 | 1.0832 | R(15,20) | 1.0834 | 1.0831 | |
R(16,17) | 1.3865 | 1.3811 | R(16,17) | 1.3863 | 1.3853 | |
R(16,19) | 1.0817 | 1.0814 | R(16,19) | 1.0819 | 1.0816 | |
R(17,21) | 1.3918 | 1.4001 | R(17,21) | 1.3940 | 1.3941 | |
R(17,23) | 1.0833 | 1.0828 | R(17,23) | 1.0834 | 1.0832 | |
R(18,21) | 1.3861 | 1.3922 | R(18,21) | 1.3881 | 1.3884 | |
R(18,22) | 1.0828 | 1.0764 | R(18,22) | 1.0829 | 1.0827 | |
R(21,24) | 1.4062 | 1.3977 | R(21,24) | 1.3963 | 1.3950 | |
R(24,25) | 1.3322 | 1.3265 | R(24,25) | 1.3471 | 1.3480 | |
R(25,26) | 1.3364 | 1.3408 | R(25,26) | 1.3207 | 1.3204 | |
R(25,27) | 1.3335 | 1.3332 | R(25,27) | 1.3352 | 1.3343 | |
R(26,29) | 1.3181 | 1.3143 | R(26,29) | 1.3375 | 1.3377 | |
R(27,28) | 1.323 | 1.3243 | R(27,28) | 1.3322 | 1.3320 | |
R(28,30) | 1.3251 | 1.3212 | R(28,30) | 1.3341 | 1.3337 | |
R(28,31) | 1.7370 | 1.7407 | R(28,31) | 1.3293 | 1.3287 | |
R(29,30) | 1.3313 | 1.3338 | R(29,30) | 1.3313 | 1.3309 | |
R(29,32) | 1.7368 | 1.7394 | R(29,32) | 1.3289 | 1.3285 | |
R(31,33) | 1.4395 | 1.4386 | ||||
R(32,34) | 1.4387 | 1.4376 | ||||
R(33,37) | 1.0877 | 1.0877 | ||||
R(33,38) | 1.0904 | 1.0906 | ||||
R(33,39) | 1.0904 | 1.0906 | ||||
R(34,35) | 1.0905 | 1.0907 | ||||
R(34,36) | 1.0878 | 1.0878 | ||||
R(34,40) | 1.0905 | 1.0907 | ||||
A(2,1,3) | 119.8491 | 119.8255 | A(2,1,3) | 119.868 | 119.8388 | |
A(2,1,4) | 119.9693 | 119.9792 | A(2,1,4) | 119.9574 | 119.9755 | |
A(3,1,4) | 120.1816 | 120.1953 | A(3,1,4) | 120.1746 | 120.1857 | |
A(1,2,5) | 120.1516 | 120.2197 | A(1,2,5) | 120.1863 | 120.2381 | |
A(1,2,7) | 121.3608 | 121.5219 | A(1,2,7) | 121.3478 | 121.5239 | |
A(5,2,7) | 118.4876 | 118.2584 | A(5,2,7) | 118.4659 | 118.2379 | |
A(1,3,6) | 120.0379 | 120.049 | A(1,3,6) | 119.9930 | 120.0212 | |
A(1,3,8) | 120.0542 | 120.0368 | A(1,3,8) | 120.0750 | 120.0527 | |
A(6,3,8) | 119.9079 | 119.9142 | A(6,3,8) | 119.9320 | 119.9262 | |
A(2,5,9) | 119.9943 | 119.8864 | A(2,5,9) | 119.9337 | 119.8524 | |
A(2,5,11) | 115.4060 | 115.5313 | A(2,5,11) | 115.4377 | 115.5340 | |
A(9,5,11) | 124.5997 | 124.5823 | A(9,5,11) | 124.6286 | 124.6136 | |
A(3,6,9) | 120.4644 | 120.4173 | A(3,6,9) | 120.4807 | 120.4215 | |
A(3,6,10) | 119.7965 | 119.8171 | A(3,6,10) | 119.7925 | 119.8186 | |
A(9,6,10) | 119.7391 | 119.7656 | A(9,6,10) | 119.7268 | 119.7598 | |
A(5,9,6) | 119.5026 | 119.6022 | A(5,9,6) | 119.5382 | 119.6280 | |
A(5,9,12) | 119.1996 | 118.8527 | A(5,9,12) | 119.1681 | 118.8217 | |
A(6,9,12) | 121.2978 | 121.5451 | A(6,9,12) | 121.2937 | 121.5503 | |
A(5,11,13) | 115.5100 | 115.2662 | A(5,11,13) | 115.4347 | 115.2237 | |
A(11,13,14) | 115.2020 | 114.9638 | A(11,13,14) | 115.3550 | 115.1491 | |
A(13,14,15) | 115.5077 | 115.9160 | A(13,14,15) | 115.5585 | 115.6542 | |
A(13,14,16) | 124.6185 | 124.7627 | A(13,14,16) | 124.6730 | 124.6589 | |
A(15,14,16) | 119.8733 | 119.3213 | A(15,14,16) | 119.7677 | 119.6860 | |
A(14,15,18) | 120.4701 | 121.5886 | A(14,15,18) | 120.4887 | 120.5353 | |
A(14,15,20) | 118.6136 | 118.2510 | A(14,15,20) | 118.5536 | 118.3204 | |
A(18,15,20) | 120.9161 | 120.1604 | A(18,15,20) | 120.9575 | 121.1441 | |
A(14,16,17) | 119.8668 | 119.7721 | A(14,16,17) | 119.8550 | 119.9392 | |
A(14,16,19) | 119.2056 | 119.0706 | A(14,16,19) | 119.1820 | 118.8290 | |
A(17,16,19) | 120.9274 | 121.1573 | A(17,16,19) | 120.9626 | 121.2317 | |
A(16,17,21) | 119.1566 | 120.0388 | A(16,17,21) | 119.4888 | 119.4923 | |
A(16,17,23) | 121.1194 | 121.4770 | A(16,17,23) | 121.1278 | 121.2125 | |
A(21,17,23) | 119.7238 | 118.4841 | A(21,17,23) | 119.3829 | 119.2941 | |
A(15,18,21) | 118.5897 | 118.0594 | A(15,18,21) | 118.8975 | 118.9306 | |
A(15,18,22) | 121.3665 | 120.9035 | A(15,18,22) | 121.3507 | 121.4215 | |
A(21,18,22) | 120.0436 | 121.0371 | A(21,18,22) | 119.7514 | 119.6469 | |
A(17,21,18) | 122.0378 | 121.2197 | A(17,21,18) | 121.4932 | 121.4119 | |
A(17,21,24) | 118.9268 | 111.8759 | A(17,21,24) | 119.0747 | 119.1287 | |
A(18,21,24) | 118.8476 | 126.9041 | A(18,21,24) | 119.2288 | 119.2770 | |
A(21,24,25) | 120.0709 | 129.1648 | A(21,24,25) | 119.9273 | 119.7655 | |
A(24,25,26) | 114.4586 | 112.8785 | A(24,25,26) | 114.4411 | 114.3759 | |
A(24,25,27) | 119.7369 | 121.9643 | A(24,25,27) | 118.5148 | 118.4620 | |
A(26,25,27) | 125.8044 | 125.1572 | A(26,25,27) | 127.0441 | 127.1621 | |
A(25,26,29) | 113.4695 | 113.7925 | A(25,26,29) | 113.1869 | 113.0421 | |
A(25,27,28) | 113.6338 | 113.8730 | A(25,27,28) | 113.5277 | 113.4973 | |
A(27,28,30) | 127.0188 | 127.2750 | A(27,28,30) | 126.0023 | 126.0114 | |
A(27,28,31) | 116.5331 | 116.1915 | A(27,28,31) | 119.2383 | 119.2170 | |
A(30,28,31) | 116.448 | 116.5335 | A(30,28,31) | 114.7595 | 114.7716 | |
A(26,29,30) | 127.2061 | 127.3388 | A(26,29,30) | 126.5047 | 126.6037 | |
A(26,29,32) | 116.6877 | 116.7555 | A(26,29,32) | 114.3573 | 114.2953 | |
A(30,29,32) | 116.1062 | 115.9057 | A(30,29,32) | 119.1379 | 119.1011 | |
A(28,30,29) | 112.8674 | 112.5635 | A(28,30,29) | 113.7344 | 113.6834 | |
A(28,31,33) | 118.0585 | 117.7912 | ||||
A(29,32,34) | 118.0720 | 117.7825 | ||||
A(31,33,37) | 104.8201 | 104.868 | ||||
A(31,33,38) | 110.6731 | 110.7597 | ||||
A(31,33,39) | 110.7096 | 110.7916 | ||||
A(37,33,38) | 110.6474 | 110.6489 | ||||
A(37,33,39) | 110.6762 | 110.6752 | ||||
A(38,33,39) | 109.2629 | 109.0593 | ||||
A(32,34,35) | 110.6802 | 110.7633 | ||||
A(32,34,36) | 104.7965 | 104.8702 | ||||
A(32,34,40) | 110.6918 | 110.7720 | ||||
A(35,34,36) | 110.6946 | 110.6835 | ||||
A(35,34,40) | 109.2314 | 109.0298 | ||||
A(36,34,40) | 110.6963 | 110.6858 | ||||
D(3,1,2,5) | 0.0177 | 0.0031 | D(3,1,2,5) | 0.0081 | 0.0011 | |
D(3,1,2,7) | -179.9673 | -179.9949 | D(3,1,2,7) | -179.9843 | -179.9847 | |
D(4,1,2,5) | 179.9903 | -179.9991 | D(4,1,2,5) | 179.9991 | 179.991 | |
D(4,1,2,7) | 0.0053 | 0.0029 | D(4,1,2,7) | 0.0067 | 0.0053 | |
D(2,1,3,6) | -0.0133 | -0.0003 | D(2,1,3,6) | 0.0189 | 0.0144 | |
D(2,1,3,8) | 179.9667 | 179.9996 | D(2,1,3,8) | -179.9948 | 179.9940 | |
D(4,1,3,6) | -179.9859 | -179.9982 | D(4,1,3,6) | -179.9721 | -179.9755 | |
D(4,1,3,8) | -0.0059 | 0.0018 | D(4,1,3,8) | 0.0142 | 0.0041 | |
D(1,2,5,9) | -0.0157 | -0.0044 | D(1,2,5,9) | -0.0402 | -0.0183 | |
D(1,2,5,11) | -179.9565 | -179.9941 | D(1,2,5,11) | 179.9206 | 179.9590 | |
D(7,2,5,9) | 179.9697 | 179.9937 | D(7,2,5,9) | 179.9525 | 179.9679 | |
D(7,2,5,11) | 0.0289 | 0.0039 | D(7,2,5,11) | -0.0868 | -0.0548 | |
D(1,3,6,9) | 0.0071 | -0.0011 | D(1,3,6,9) | -0.0139 | -0.0127 | |
D(1,3,6,10) | 179.9864 | 179.9992 | D(1,3,6,10) | 179.9548 | 179.9651 | |
D(8,3,6,9) | -179.973 | 179.9989 | D(8,3,6,9) | 179.9998 | -179.9924 | |
D(8,3,6,10) | 0.0063 | -0.0007 | D(8,3,6,10) | -0.0315 | -0.0146 | |
D(2,5,9,6) | 0.0093 | 0.0029 | D(2,5,9,6) | 0.0449 | 0.0200 | |
D(2,5,9,12) | -179.9699 | -179.9941 | D(2,5,9,12) | -179.9416 | -179.9621 | |
D(11,5,9,6) | 179.9444 | 179.9917 | D(11,5,9,6) | -179.9120 | -179.9551 | |
D(11,5,9,12) | -0.0348 | -0.0054 | D(11,5,9,12) | 0.1015 | 0.0628 | |
D(2,5,11,13) | -179.7657 | -179.9391 | D(2,5,11,13) | -179.8240 | -179.897 | |
D(9,5,11,13) | 0.2965 | 0.0716 | D(9,5,11,13) | 0.1347 | 0.0790 | |
D(3,6,9,5) | -0.0051 | -0.0002 | D(3,6,9,5) | -0.0180 | -0.0046 | |
D(3,6,9,12) | 179.9737 | 179.9968 | D(3,6,9,12) | 179.9682 | 179.9770 | |
D(10,6,9,5) | -179.9844 | 179.9995 | D(10,6,9,5) | -179.9868 | -179.9823 | |
D(10,6,9,12) | -0.0056 | -0.0036 | D(10,6,9,12) | -0.0006 | -0.0007 | |
D(5,11,13,14) | -179.8965 | -179.9982 | D(5,11,13,14) | 179.9199 | 179.9484 | |
D(11,13,14,15) | -179.6077 | -179.9058 | D(11,13,14,15) | -179.3247 | -179.6274 | |
D(11,13,14,16) | 0.1471 | 0.0858 | D(11,13,14,16) | 0.9973 | 0.7188 | |
D(13,14,15,18) | 179.9549 | 179.9871 | D(13,14,15,18) | 179.7831 | 179.8808 | |
D(13,14,15,20) | 0.1338 | -0.0034 | D(13,14,15,20) | -0.3765 | -0.2260 | |
D(16,14,15,18) | 0.1876 | -0.0050 | D(16,14,15,18) | -0.5220 | -0.4470 | |
D(16,14,15,20) | -179.6335 | -179.9956 | D(16,14,15,20) | 179.3184 | 179.4461 | |
D(13,14,16,17) | -179.9533 | -179.9862 | D(13,14,16,17) | -179.8403 | -179.928 | |
D(13,14,16,19) | -0.1421 | 0.0018 | D(13,14,16,19) | 0.3871 | 0.2131 | |
D(15,14,16,17) | -0.2085 | 0.0052 | D(15,14,16,17) | 0.4944 | 0.4313 | |
D(15,14,16,19) | 179.6027 | 179.9932 | D(15,14,16,19) | -179.2783 | -179.4277 | |
D(14,15,18,21) | 0.3395 | 0.0184 | D(14,15,18,21) | -0.2008 | -0.0886 | |
D(14,15,18,22) | -179.5133 | 179.9403 | D(14,15,18,22) | 179.567 | 179.5542 | |
D(20,15,18,21) | -179.8436 | -179.9913 | D(20,15,18,21) | 179.9627 | -179.9787 | |
D(20,15,18,22) | 0.3037 | -0.0693 | D(20,15,18,22) | -0.2695 | -0.3359 | |
D(14,16,17,21) | -0.2975 | -0.0189 | D(14,16,17,21) | 0.2521 | 0.1170 | |
D(14,16,17,23) | 179.5522 | 179.979 | D(14,16,17,23) | -179.4862 | -179.4945 | |
D(19,16,17,21) | 179.8946 | 179.9933 | D(19,16,17,21) | -179.9794 | 179.9725 | |
D(19,16,17,23) | -0.2557 | -0.0088 | D(19,16,17,23) | 0.2824 | 0.3609 | |
D(16,17,21,18) | 0.8537 | 0.0332 | D(16,17,21,18) | -1.0001 | -0.6692 | |
D(16,17,21,24) | 175.813 | 179.8492 | D(16,17,21,24) | -175.7772 | -175.7260 | |
D(23,17,21,18) | -178.9982 | -179.9648 | D(23,17,21,18) | 178.7428 | 178.9498 | |
D(23,17,21,24) | -4.0389 | -0.1488 | D(23,17,21,24) | 3.9656 | 3.8931 | |
D(15,18,21,17) | -0.8707 | -0.0323 | D(15,18,21,17) | 0.9704 | 0.6527 | |
D(15,18,21,24) | -175.8339 | -179.8188 | D(15,18,21,24) | 175.7396 | 175.7022 | |
D(22,18,21,17) | 178.984 | -179.9542 | D(22,18,21,17) | -178.8012 | -178.9966 | |
D(22,18,21,24) | 4.0208 | 0.2593 | D(22,18,21,24) | -4.0319 | -3.9470 | |
D(17,21,24,25) | 90.226 | 178.8493 | D(17,21,24,25) | -91.8231 | -91.8875 | |
D(18,21,24,25) | -94.6519 | -1.3474 | D(18,21,24,25) | 93.2799 | 92.9489 | |
D(21,24,25,26) | -179.6603 | -179.9183 | D(21,24,25,26) | 179.6712 | 179.7475 | |
D(21,24,25,27) | 0.4244 | 0.0569 | D(21,24,25,27) | -0.3775 | -0.2903 | |
D(24,25,26,29) | -179.9052 | 179.9666 | D(24,25,26,29) | 179.9738 | 179.9756 | |
D(27,25,26,29) | 0.0042 | -0.0077 | D(27,25,26,29) | 0.0274 | 0.0172 | |
D(24,25,27,28) | 179.8837 | -179.9630 | D(24,25,27,28) | -179.9487 | -179.9508 | |
D(26,25,27,28) | -0.0213 | 0.0090 | D(26,25,27,28) | -0.0043 | 0.0060 | |
D(25,26,29,30) | 0.0076 | 0.0006 | D(25,26,29,30) | -0.0232 | -0.0269 | |
D(25,26,29,32) | -179.9965 | 179.9992 | D(25,26,29,32) | 179.981 | 179.9844 | |
D(25,27,28,30) | 0.0307 | -0.0037 | D(25,27,28,30) | -0.0280 | -0.0247 | |
D(25,27,28,31) | -179.9657 | -179.9956 | D(25,27,28,31) | 179.9526 | 179.9486 | |
D(27,28,30,29) | -0.0209 | -0.0022 | D(27,28,30,29) | 0.0314 | 0.0167 | |
D(31,28,30,29) | 179.9754 | 179.9897 | D(31,28,30,29) | -179.9501 | -179.9576 | |
D(26,29,30,28) | -0.0001 | 0.0038 | D(27,28,31,33) | -0.1575 | -0.1236 | |
D(32,29,30,28) | 180.0039 | -179.9947 | D(30,28,31,33) | 179.8253 | 179.8527 | |
D(26,29,30,28) | -0.0033 | 0.0115 | ||||
D(32,29,30,28) | 179.9923 | -180.0002 | ||||
D(26,29,32,34) | 179.9461 | 179.9613 | ||||
D(30,29,32,34) | -0.0500 | -0.0283 | ||||
D(28,31,33,37) | 179.8244 | 179.8623 | ||||
D(28,31,33,38) | -60.8554 | -60.7431 | ||||
D(28,31,33,39) | 60.4513 | 60.4199 | ||||
D(29,32,34,35) | -60.6638 | -60.6072 | ||||
D(29,32,34,36) | 179.9701 | 179.9539 | ||||
D(29,32,34,40) | 60.5960 | 60.5077 |
L1、L2分子最优几何构型与原子编号如图1、图2所示,表1给出了两个分子稳定构型的键长、键角和二面角。从表1的数据可以看出,L1分子中的C5-N11、C14-N13键长略小于L2分子,而N11=N13 双键略长于L2分子,电子流通性更好。L1分子C21-O24键长略长于L2分子,而C25-O24键长小于L2分子,这是由于杂环上的取代基不一样,导致具有Cl离子取代基的L1分子共轭体系范围扩大,键长趋于平均化,电子流通性优于L2分子。通过计算可知L1分子的C-Cl键键长在1.738 Å左右,符合典型的C-Cl键。L2分子C28-O31和C29-O32键长在1.328 Å左右,符合典型的C-O键。通过B3LYP/6-311 G**、B3LYP /6-311G**两种计算方法L1分子C21-O24-C25键角和大于L2分子,可以知道,具有Cl-取代基的L1分子更趋于平面,所以共轭体系范围扩大,电子流通性更好。
3.2 红外光谱
表2 L1、L2分子通过B3LYP/6-311 G**、B3LYP/6-311G**计算所得的红外振动频率值
L1 | L2 | ||||
B3LYP 6-311 G** | 6-311G** | B3LYP 剩余内容已隐藏,请支付后下载全文,论文总字数:25494字
您需要先支付 80元 才能查看全部内容!立即支付
该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找; |