论文总字数:30305字
摘 要
经济的世界性与银行业开放和竞争,科技水平突飞猛进,银行业务方面的迅速变化,导致了客户关系管理在银行方面的大量使用。银行方面就开始运用CRM,将客户信息资源归一,找出客户的存在意义,使客户使用起来更加的方便、可靠的东西与服务,加强客户的认可度与可信度,收拢更加多的客户,达到完成银行利润的最大化。
于是在如此严峻的情况中,怎样详细的区分客户的喜好,就要与客户完成业务办理的时候懂得客户的爱好,然后来使用不一样的管客户理,这是银行页目前将面对的很大的挑战。现在的我通过自身学习聚类分析技术来挖掘出银行已经有的客户的需要、喜欢的东西等,一对一的使用不一样的服务,从而来提高银行业相关人员的销售水平,这样银行的利润才能达到最大化。
因为某银行的业务逐步在扩大,客户越来越多,银行数据库已经堆积很多,想要进一步发展,必须对客源进行分析,所以这里要求用到聚类分析技术,利用数据挖掘技术来找出客户所需要的东西,挖掘出隐藏客户,利用这点,使银行的业务做大做强。
通过分析某银行的600条客户数据,进行细分,挖掘出他们的价值,挖掘出该银行与客户的潜在关系,从而提出自己的一条满足各类客户需求的方案。
关键词:聚类分析技术;客户关系管理;客户细分
Abstract
Economy of the world and the opening up of banking industry and the competition, the level of science and technology by leaps and bounds, the rapid changes in the banking business, resulting in the extensive use of customer relationship management in the bank. Banks began to use CRM, the normalization of the resource of customer information, find out the customer"s existence significance, enabling customers to use more convenient and reliable and the service, strengthening the customer recognition and credibility, gathered more and more customers to complete the bank profits.
So in such a grim situation, detailed how to distinguish customer preferences, with the customer to complete the business for the time to understand customer preferences, then to use different customer"s theory. This is bank at present will face great challenge. Now I through their own learning clustering analysis technology to dig out the bank has some customers need, like something, to use the service to improve the level of sales of banking related personnel, such bank profits can reach maximum.
Because a bank"s business gradually expanding, more and more customers, bank database has accumulated a lot of, want to further development must carries on the analysis to the source, so here to ask use the technology of clustering analysis, using data mining techniques to find out what customers need, dig out the hidden customer, use this, the bank"s business bigger and stronger.
Through the analysis of a bank"s 600 customer data, segmentation, dig out their value, dig out the potential relationship between the bank and the customer, and puts forward own meet the various needs of customers scheme.
Keywords: clustering analysis technology; customer relationship management; customer segmentation
目录
摘 要 2
第一章 绪论 4
1.1客户关系管理国内外现状 5
1.2聚类分析技术简介 5
1.3 Weka软件介绍 9
第二章 聚类分析技术中相关算法的概述 10
2.1 DBSCAN算法简介 10
2.2 OneR算法简介 11
2.3 ADTree算法简介 12
第三章 基于聚类分析算法下的数据挖掘 13
3.1某银行背景资料 13
3.2基于某银行客户的数据预处理 13
3.3基于聚类分析算法下的数据挖掘 15
3.3.1使用weka软件的操作步骤 15
3.3.2基于DBSCAN算法下的客户数据聚类 17
3.3.3基于ADTree算法下的客户数据聚类 21
3.3.4基于OneR算法下的客户数据聚类 23
3.3.5基于mortgage属性下的数据分析 24
第四章 总结 29
4.1年龄与抵押贷款分析 29
4.2婚姻状况与抵押贷款关系分析 29
4.3孩子多少与抵押贷款关系分析 29
4.4结论分析处理 29
谢 辞 33
参考文献 34
第一章 绪论
1.1客户关系管理国内外现状
剩余内容已隐藏,请支付后下载全文,论文总字数:30305字
该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;