基于能量收集的智能温湿度传感器设计

 2022-05-18 20:05:42

论文总字数:40249字

摘 要

随着物联网的迅猛发展,类似传感器之类的物联网设备得到了广泛的应用。但是传感器节点的持续供能问题也就突显了出来,传统的电池供能方案由于电池本身的寿命限制和体积限制,渐渐地难以满足人们的需求。因此,从周围环境中获取能量特别是收集太阳能量来为传感器节点供电就成为不二之选。

本文基于太阳能量收集架构设计了一款自供电温湿度传感器。在架构的太阳能量收集部分,根据软件中所提供的太阳能电池单元的二极管模型画出等效电路模型并进行了分析,再根据阴影遮蔽条件把12个太阳能电池单元所组成的太阳能电池设计出一种独特的L型三级阴影遮蔽能量收集模型,为了解决阴影遮蔽效应所带来的功率输出曲线的多波峰问题,还在传统算法的基础上优化了最大功率点跟踪算法。通过仿真,证明了所提出的算法在所设计的L型三级阴影遮蔽能量收集模型下仍然能够正确地跟踪到最大功率点,成功地避免了输出功率因算法问题而进一步下降。

在架构的能量存储部分,结合了充电实际情况和太阳能量收集部分的数据,通过能耗分析,在充电方面计算出了升压稳压器的输出特性,确定了升压稳压器的型号,之后根据超级电容在模型中的充电公式,计算出了保证充电过程的超级电容值。

在架构的能量消耗部分,结合了放电实际情况和所选芯片的输入特性,通过能耗分析确定了稳压器的输出特性,确定了稳压器的型号,之后根据超级电容在模型中的放电公式,计算出了保证放电过程中的超级电容值。最终综合充电部分和实际情况,确定超级电容的电压和电容值为4V/100F。该架构的MPPT电路能够在仅仅只有2s的仿真时间内能够快速检测出遮蔽变化,避免了遮蔽期间的功率因算法问题下降为原来的44%-63%这一现象的发生。该设计保证了在除了极端充放电环境下,能够持续14个小时的纯充电过程,全部容量在太阳能量收集完全停止工作的情况下,能够基本满足能量消耗电路在夜晚最长12.5个小时的持续工作。

关键词:传感器架构、太阳能量收集、阴影遮蔽、最大功率点跟踪(MPPT)、超级电容

Abstract

With the rapid development of the Internet of Things, IoT devices such as sensors have been widely used. However, the continuous power supply problem of the sensor node is also highlighted. The traditional battery power supply scheme is gradually unable to meet people's needs due to the life limit and volume limitation of the battery itself. Therefore, it is the best choice to extract energy from the surrounding environment, especially to collect solar energy to power the sensor nodes.
This paper presents a complete temperature and humidity sensor architecture based on solar energy collection. In the solar energy collection part of the architecture, the equivalent circuit model is drawn and analyzed according to the diode model of the solar cell unit provided in the software, and then the solar panel composed of 12 solar cells is designed into a unique L-shaped three-level shadow masking energy harvesting model according to the shadow shielding condition. . In order to solve the multi-peak problem of power output curve caused by shadow shadowing effect, the maximum power point tracking algorithm is proposed based on the traditional algorithm. The simulation proves that the proposed algorithm can still correctly track the maximum power point under the designed L-type three-level shadow shading energy collection model, and successfully avoids the phenomenon that the output power being reduced to 44%-63% due to the algorithm problem.
In the energy storage part of the architecture, combined with the actual charging situation and the data of the solar energy collection part, through the energy analysis, the output characteristics of the boost regulator are calculated in terms of charging, and the model of the boost regulator is determined. Then, based on the charging formula of the super capacitor in the model, the super capacitor value that guarantees the charging process is calculated.
In the energy consumption part of the architecture, combined with the actual discharge situation and the input characteristics of the selected chip, the output characteristics of the regulator are determined by energy analysis, the type of the regulator is determined, and then the discharge is based on the supercapacitor in the model. The formula calculates the value of the super capacitor during the guaranteed discharge process. Finally, the integrated charging part and the actual situation, determine the voltage and capacitance value of the super capacitor is 4V/100F. The MPPT circuit of this architecture can quickly detect the shadow change in the simulation time of only 2s, avoiding the phenomenon that the power during the masking period is reduced to 44%-63% due to the algorithm problem. This design guarantees a pure charging process that lasts for 14 hours in addition to extreme charge and discharge environments. The full capacity can basically meet the energy consumption circuit lasting up to 12.5 hours at night when the solar energy collection is completely stopped..

KEY WORDS: sensor node, Solar energy collection, partial shading, maximum power point tracking, super capacitor

目 录

摘要

Abstract

第一章 绪论 1

1.1课题背景及研究目的及意义 1

1.2 国内外研究现状 2

1.2.1国内研究现状 2

1.2.2国外研究现状 3

1.3 主要内容和章节安排 4

第二章 基于太阳能的能量收集系统介绍 5

2.1系统架构简述 5

2.2 太阳能量收集部分 5

2.2.1 仿真环境 5

2.2.2 太阳能单元等效电路的模型分析 6

2.2.3 阴影遮蔽效应 6

2.2.4 扰动观察法(Pamp;O) 7

2.3 蓝牙模块部分 8

2.3.1 蓝牙4.0 BLE协议 8

2.3.2 HC-08 蓝牙模块 9

2.4 温度传感器部分 9

2.4.1 仿真环境 9

2.4.2 SHT10温湿度传感器 10

2.4.3 LM016L液晶显示屏 11

第三章 传感器节点具体架构的设计 13

3.1 能量收集电路设计 13

3.2 能量存储电路设计 14

3.3能量消耗电路设计 15

第四章 系统仿真及pcb设计 16

4.1太阳能收集模块MATLAB/Simulink仿真 16

4.2温湿度传感器Keil uVision4和Proteus 8 Professional联合仿真 19

第五章 总结与展望 22

参考文献 23

致 谢 26

剩余内容已隐藏,请支付后下载全文,论文总字数:40249字

您需要先支付 80元 才能查看全部内容!立即支付

该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;