论文总字数:24396字
摘 要
门座式起重机是一种常见的效率高的起重设备,通常用在港口、采矿等场合。它的结构非常复杂,包含多个功能不同的工作部件,是起重机正常工作的重要部分。所以,这就要求我们在设计减速器的时候必须确保其性能,确保回转机构的稳定性,进而提高整个起重机的效率和可靠性,避免因为结构的不合理造成的起重机安全性低,不稳定等多种问题,减少因为机器的原因耽误生产经济效益。
本次回转机构减速器设计采用传动比为210的立式减速器;传动方式选择斜齿圆柱齿轮,并且采用分流式布置,可使得传动比大大提高,同时具有节省空间,工作稳定,承载能力高等优点。根据起重机的工作环境对减速器零件进行计算校核,在满足工作要求的前提下,合理设计各级齿轮传动的结构和尺寸,使减速器的空间布局更加合理紧凑;确定减速器各级间传动方式,分配各级传动比,计算校核各级零件尺寸,选择合适的材料;用UG软件画图;最后将重要的部件的三维模型图保存有限元分析的模型,通过ANSYS WORKBENCH软件中相关的静力学分析的内容,更加便捷的查看各个零件在载荷的作用下的应力应变的数据,再与手动校核的数据比对,更加精确的保证整个减速器机构设计的合理性。综上所述:对减速器进行最为精确的设计与校核是保证整个回转机构乃至起重机整体性能的重要部分。
关键词:门座式起重机;三级立式斜齿轮减速器;回转机构;传动比;有限元
Design of vertical reducer and finite element analysis of key parts
Abstract
Portal crane is a common high efficiency lifting equipment,it usually used in ports, mining and other occasions. Its structure is very intricate, including many different functions of the working parts, in which the role of the rotary mechanism is to make the rotary part of the crane movement, it is an important part of the crane’s work. Therefore, the reasonable design of the reducer can ensure the stability of the rotary mechanism, and then improve the efficiency and reliability of the whole crane, avoid the unreasonable structure caused by the crane result in safety is low, unstable and other problems, reduce the benefits of production because of the cause of the machine delay.
The design of the rotary mechanism reducer adopts a vertical reducer with a transmission ratio of 210, and the transmission mode selects the oblique tooth cylindrical gear, uses the shunt arrangement, which can make the transmission ratio greatly improved, and has the superiorities of saving space, stable work and high bearing capacity. On the basis of the working environment of the crane, the reducer parts are calculated and checked, and under the premise of ensuring that the load requirements are met, the structure and size of gear transmission at all levels are reasonably designed, so that the space layout of the reducer is more reasonable and compact, the transmission mode of the reducer is determined at all levels, the distribution ratio is distributed at all levels, Using UG for three-dimensional modeling and assembly, and finally by importing the three-dimensional model of key components into ANSYS WORKBENCH software for static finite element analysis, it is more convenient to view the stress and strain data of each part under the action of load, and then compared with the manually checked data, More accurate to ensure the rationality of the whole reducer mechanism design. To sum up: the most accurate design and verification of the reducer is an important part to ensure the overall performance of the whole rotary mechanism and even the crane.
Keywords: Portal crane;Three-stage vertical helical gear reducer;Rotary mechanism;Transmission Ratio; Finite element analysis
目 录
摘 要 I
Abstract II
第一章 引 言 1
1.1 本课题研究的内容及意义 1
1.2 国内外门座式起重机发展趋势 1
1.2.1 大型化、专业化以及高速化 1
1.2.2 起重机的模块化和标准化 1
1.3 主要研究内容 2
第二章 回转机构设计与方案选择 3
2.1 回转机构总体设计 3
2.1.2 已知条件 3
2.1.3 回转机构总图和说明 4
2.2 立式减速器的方案选择及布置 5
第三章 回转机构设计计算校核 8
3.1 回转质量及坐标,风载计算 8
3.2 回转机构载荷组合 11
3.2.1 驱动装置载荷组合工况 11
3.2.2 支承装置载荷组合工况 11
3.2.3 计算载荷一览表 11
3.2.4 滚子压力计算 14
3.2.5 滚道接触应力计算 15
3.2.6 回转支承连接螺栓强度校核 15
3.2.7 螺栓预紧力预紧力矩计算 15
3.2.8 螺栓强度计算 15
3.3 回转驱动机构等效阻力矩计算 16
3.4 电机静功率及电机校核 17
3.4.1 电机静功率及选型 17
3.4.2 电动机过载能力 18
3.4.3 电机起动时间 18
3.5 驱动装置传动比计算 19
第四章 三级立式减速器设计计算校核 20
4.1 设计参数 20
4.2 齿轮强度计算 20
4.2.1 根据设计参数减速箱中的齿轮采用优化设计 20
4.2.2 减速器齿轮(ⅠⅡⅢ级)计算 21
4.2.3 开式传动(最后一级)齿轮强度计算 23
4.3 传动轴的校核 25
4.3.1 Ⅰ轴的校核 25
4.3.2 Ⅱ轴的校核 27
4.3.3 Ⅲ轴的校核 29
4.3.4 Ⅳ轴的校核(输出轴) 31
4.4 齿轮减速箱输出轴花键联结校核 34
4.5 齿轮减速箱各轴承校核 34
4.5.1 Ⅰ轴的轴承校核 34
4.5.2 Ⅱ轴的轴承校核 35
4.5.3 Ⅲ轴的轴承校核 37
4.5.4 Ⅳ轴的轴承校核 38
第五章 三维建模及二维工程图的制作 40
5.1 三维建模 40
5.1.1零件建模 40
5.1.2 装配 42
5.2 二维工程图 42
第六章 轴、齿轮的有限元分析 45
6.1 ANSYS Workbench简介 45
6.2 有限元静力分析的主要过程 45
6.2.1 材料的添加 45
6.2.2 模型的导入 46
6.2.3 更改确认导入模型材料 47
6.2.4 设置接触面 48
6.2.5 网格划分 48
6.2.6 载荷的加载和边界约束 49
6.2.7 计算求解 51
6.3本章小结 54
第七章 结论与展望 55
7.1 结论 55
7.2 展望 55
致 谢 56
参考文献 57
附录 58
第一章 引 言
1.1 本课题研究的内容及意义
剩余内容已隐藏,请支付后下载全文,论文总字数:24396字
该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;