论文总字数:28756字
摘 要
近年来,随着电子技术的快速发展,芯片的集成度和运行速度也随之增加,但是芯片的体积却不断缩小,这导致芯片的发热问题越来越严重。芯片自身产生的热量在不断增加的同时,如果芯片内产生的热量没有得到及时散发,就会导致芯片的工作温度上升。当温度过高时,芯片的工作性能以及可靠性都会受到严重的影响。为了使得芯片在可靠稳定的条件下进行工作,芯片的散热是十分值得研究的。
本文主要针对两种不同功率密度和封装结构的芯片,通过仿真优化获得最有效的散热方案。首先是功率密度为100W/cm2的芯片,针对芯片的尺寸结构进行不同的模型建立,然后选择尺寸最优的散热模型;针对该模型再研究芯片内部的焊接材料是否对芯片整体散热有影响;最后讨论热沉基板上的翅片数量对散热结构的影响,总体围绕着模型使整体结构将芯片的最高温度降致60℃以下,使芯片能够稳定工作。伴随电子领域的飞速发展,一些高功率芯片中局部热流密度已经达到500W/cm2。本文将研究不同模型的散热结构对芯片温度的影响;不同尺寸的流道模型对芯片温度的影响以及芯片尺寸对散热是否会造成影响,三大块进行分析。芯片的功率密度不断增加,如何让芯片在高的热流密度下还能稳定的工作,就显得尤为重要。
关键词:高集成度,高功率芯片,散热结构,模型仿真,导热系数,对流传热
Abstract
In recent years, with the rapid development of electronic technology, the integration and operating speed of the chip has also increased, but the size of the chip has been shrinking, which has led to the problem of heat generation of the chip. While the heat generated by the chip itself is increasing, if the heat generated in the chip is not distributed in time, the operating temperature of the chip will rise. When the temperature is too high, the performance and reliability of the chip will be seriously affected. In order to make the chip work under reliable and stable conditions, the heat dissipation of the chip is worth studying.
This paper focuses on two chips with different power density and package structure, and obtains the most effective heat dissipation scheme through simulation optimization. The first is a chip with a power density of 100W/cm2. The overall structure around the model reduces the maximum temperature of the chip to below 60 °C, enabling the chip to work stably. With the rapid development of the electronics field, the local heat flux density in some high-power chips has reached 500W/cm2. This article will analyze the three models of different models, flow to size, and chip size. The power density of the chip is constantly increasing. It is especially important to make the chip work stably at high heat flux density.
KEY WORDS: high integration, high power chip, heat dissipation structure, model simulation, thermal conductivity, convective heat transfer.
目 录
摘要…………………………………………………………………………………………………Ⅰ
Abstract……………………………………………………………………………………………Ⅰ
- 绪论 ………………………………………………………………………………………1
1.1 研究背景及意义 ………………………………………………………………………1
1.2 温度对芯片的影响 ……………………………………………………………………1
1.3 国内外研究现状 ………………………………………………………………………3
1.4 本文研究的主要内容和结构安排 ……………………………………………………3
- 传热学以及流体流动的基本概念 ………………………………………………………4
2.1 传热学基础知识 ………………………………………………………………………4
2.1.1 热传导 ………………………………………………………………………4
2.1.2 热对流 ………………………………………………………………………5
2.2 CFD方程 ………………………………………………………………………………6
- 针对100 W/cm2芯片的散热方案 …………………………………………………………7
3.1功率密度100 W/cm2的芯片散热结构 …………………………………………………9
3.2 功率密度100 W/cm2的芯片散热模型建立 ……………………………………………9
3.3 不同散热结构对温度的影响 …………………………………………………………11
3.4 焊接材料对温度的影响 ………………………………………………………………15
3.5 翅片参数对温度的影响 ………………………………………………………………16
3.5.1 翅片数量对温度的影响 ……………………………………………………17
3.6 本章小结 ……………………………………………………………………………20
- 针对500 W/cm2芯片的散热方案 ………………………………………………………10
4.1散热结构对温度的影响 ……………………………………………………………11
4.2芯片尺寸对温度的影响 ……………………………………………………………12
4.3 材料对温度的影响 ………………………………………………………………12
4.3.1 焊接材料对温度的影响 ……………………………………………………17
4.3.2 基板材料对温度的影响 ……………………………………………………17
4.4 本章小结 ………………………………………………………………………………21
结论 ………………………………………………………………………………………………21
参考文献(References) …………………………………………………………………………21
致谢 ………………………………………………………………………………………………22
剩余内容已隐藏,请支付后下载全文,论文总字数:28756字
该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;