论文总字数:28598字
摘 要
机床是机械制造业的基础,其设计和制造水平是衡量国家机械制造业的重要标准。高速化、高精度化是当今机床工业的主要发展趋势,随着机床工业的快速发展,机床的加工精度需要进一步提高。本文以某平车的主轴系统为研究对象,主要做了以下工作:
(1)建立主轴系统的三维CAD模型,并对三维CAD模型进行简化和网格分化,确定主轴系统的热源以及系统热源的传热过程,建立有限元CAE模型。
(2)在转速600r/min,切削深度3mm,走刀量0.26mm/r的工况下计算主轴系统的发热量和热边界条件,进行主轴系统的热态特性分析,为主轴系统的优化设计做准备,并简介热边界条件对分析的影响和温度测量实验的重要性。
(3)优化设计主轴系统,采用热变形预防法,如采取对称结构、增强散热、分散热源等,并对采取的方法进行评价。优化后,主轴前端轴承温度下降了9.4%,主轴系统的整体热变形下降了19.9%。
本文结合了当今机床主轴系统热变形的研究现状,以减小主轴系统前端轴承的温升和主轴系统的整体热变形为目的,进行主轴系统结构的优化设计,提高了加工精度,同时也为同类型机床的热特性分析和优化设计提供技术参考。
关键词:主轴系统、有限元分析、热特性、Workbench、优化设计。
Abstract
Machine tool is the basis of machinery manufacturing industry, and its design and manufacturing level is an important standard to measure the national machinery manufacturing industry. High-speed and high-precision are the main development trend of machine tool industry. With the rapid development of machine tool industry, the processing accuracy of machine tools needs to be further improved. This paper takes the spindle system of a flat car as the research object, and mainly does the following work:
(1) The three-dimensional CAD model of the spindle system is established, simplified and meshed. The heat source of the spindle system and the heat transfer process of the system are determined, and the finite element CAE model is established.
(2) Under the conditions of 600 r/min speed, 3 mm cutting depth and 0.26 mm/r tool-carrying capacity, the heat generation and thermal boundary conditions of the spindle system are calculated, and the thermal characteristics of the spindle system are analyzed, which is prepared for the optimization design of the spindle system. The influence of the thermal boundary conditions on the analysis and the importance of temperature measurement experiments are briefly introduced.
(3) To optimize the spindle system, the thermal deformation prevention method is adopted, such as adopting symmetrical structure, enhancing heat dissipation and dispersing heat sources, and the methods adopted are evaluated. After optimization, the temperature of the front bearing of the spindle decreases by 9.4%, and the overall thermal deformation of the spindle system decreases by 19.9%.
This paper combines the current research status of thermal deformation of machine tool spindle system, aiming at reducing the temperature rise of the front-end bearing of the spindle system and the overall thermal deformation of the spindle system, optimizes the structure of the spindle system, improves the processing accuracy, and provides technical reference for the thermal characteristic analysis and optimization design of the same type of machine tool.
KEY WORDS: the spindle system, the finite element method, thermal characteristics, Workbench, the optimization design
目 录
摘 要 I
Abstract II
第一章 绪论 1
1.1研究背景及意义 1
1.2机床热特性分析研究现状 1
1.3改善热变形的措施 2
1.4论文研究内容 3
第二章 主轴系统热源及热边界计算 5
2.1主轴系统热源分析 5
2.1.1轴承最小载荷及预紧 5
2.1.2切削力计算 7
2.1.3轴承总载荷 8
2.1.4主轴系统发热量计算 9
2.2主轴系统热边界条件分析 10
2.3 总结 13
第三章 主轴系统的有限元分析 14
3.1概述 14
3.2主轴系统有限元模型的建立 14
3.2.1主轴系统三维CAD模型 14
3.2.2三维CAD模型简化 16
3.3有限元分析前处理设置 17
3.3.1材料属性 17
3.3.2网格划分 18
3.3.3热源与热边界设置 18
3.4主轴系统稳态热分析 20
3.5总结 21
第四章 主轴系统结构的优化设计 23
4.1概述 23
4.2螺栓孔的优化 24
4.3筋板的布置 27
4.4散热凹面的优化设计 31
4.5分散热源 34
4.6总结 35
第五章 总结与展望 36
5.1 总结 36
5.2展望 36
参考文献 38
致 谢 39
第一章 绪论
1.1研究背景及意义
机床工业是机械制造业的基础,其设计和制造生产水平是衡量国家制造业的标杆,是国家现代化建设的主要体现。国家也越来越重视机床工业的发展,例如在重大项目立项中将机床作为单独一项。然而,我国的机床工业与发达国家仍有一定的差距,许多机床的加工误差较大,而高速精加工时的加工精度往往达不到要求,高精度机床的零部件往往要通过进口。目前,我国的工业沿着高精度化方向发展,这就要求数控机床的加工精度进一步提高。
大量的研究表明,热误差是加工误差的主要来源,达到40%[1];对于高速高精的精加工,由于转速高,机床的发热量更大,此时热误差占了总误差的40%-70%[2]。因此,减小机床热变形是减小加工误差、提高加工精度的重要手段。
剩余内容已隐藏,请支付后下载全文,论文总字数:28598字
该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;