论文总字数:30325字
摘 要
: 最近几十年来,随着微纳米技术的深入研究和机械制造技术的迅猛发展,微流控技术有了更好的理论和基础制造前提,使其得到更为广泛的研究.首先.本文在微纳机械制造技术的基础上,从流速、粒子尺寸、溶液特性等方面进行了对比实验,探究了被动型微流控粒子的聚焦原理和器件及开发。首先基于PDMS芯片制造工艺,完成用于探究被动型微流控粒子聚焦机理的不同结构、尺寸的微流控器件的制作。分别测试直流道中(矩形截面和方形截面)和突扩流道中粒子聚焦效果与流速的变化关系。其次,分析流道截面形状(矩形和方形)及截面尺寸对球形粒子迁移的调控。探究溶液浓度对粒子聚焦的影响,实验8%PVP、0.05wt%PEO、以及22%甘油水溶液中粒子不同的迁移过程。对比不同尺寸直流道中粒子的聚焦效果,探究流道尺寸对粒子迁移聚焦的影响。另外,对比突扩流道与相同尺寸直流道中溶液流速、截面尺寸对被动型微流控粒子的调控.同时,利用黏弹性效应可显著加强微流控芯片对微纳米尺寸的粒子(不仅仅是球形粒子)的操控效率,能够大大地减小芯片的结构尺寸。利用COMSOL进行仿真,对流体(伯格流体,流体粘度不随流速变化)在芯片中的速度场,压力场,以及流体剪切率的分布进行仿真,对仿真结果进行分析,研究其与实验结果之间的关系。关键词:被动微流控、黏弹性、聚焦机理、截面形状、仿真
Focusing component’s developing of passive microfluidics and study on the focusing mechanism
02012505 Zhengyu
Supervised by Xiang Nan、Ni Zhonghua
Abstract: Recent years,with the development of micro-nano manufacturing technology,microfluidics technipue has earn widespread respect.Particles can be focused to a line only relying on viscoelastic properties of the solution itself, thus it attracts extensive research and attention.This paper designs microchips with straight and expansion-contraction channels based on classic molding, sets up a platform to characterize the viscoelastic focusing effect and dynamic focusing process of fluorescent polystyrene particles.Specifically: (1)based on a variaty of the technology for fabrication of the micro-prototype device,we prepared diversified micro-devices of different cross-sectional dimensions to explore viscoelastic focusing mechanism of particles.Capillary was utilized to manufacture the rigidcircular cross-section microchannel devices with high-pressure drainage and waste collection modules. The method of wire removal was also utilized to manufacture circular cross-section microchannels made of PDMS.A variety of rectangular cross-sectional microchannel with different dimensions were fabricated, such as straight microchannels, expansion-contraction microchannel, curved microchannel, using mask-based lithography and PDMS micromolding techniques. (2)exploration of the viscoelastic focusing mechanisms of microparticles in rectangular cross-sectional microchannels;Firstly, the lateral migration behaviors of particles suspended in Newtonian fluids and viscouselastic fluids were compared,It is found that particles suspended in non-Newtonian fluids would migrate towards the channel centerline and form a single-line particles array under the action of elastic force.The results showed that the focusing degree increased and finally stabilized at a certain value with increasing flow rates, and the larger 9.9μm particles have better focusing quality than the smaller 4..8μm particles.(3)exploration of the viscoelastic focusing mechanisms of microparticles in straight microchannels and expansion-contraction microchannels of rectangular cross-sectional.The effects of the driving flow rate of PVP solution on particles focusing were explored, instraight microchannels with rectangular cross-sectional. And the process of manipulation of particles was similar to the straight microchannels with circular cross-section. How the cross-sectional shape and size of the microchannels affecting on viscoelastic migration of particles was analyzed. And the result s how that a rectangular cross-section was more difficult to realize particles focusing than the circular cross-section.(4)simulation analysis.Use COMSOL Multiphysics analyze viscoelastic fluid,find the regularity of shear rate.
Key words:passive microfluidics,viscoelasticity,focusing mechanism,simulation analysis,shape of cross-section
目录
摘要 I
Abstract II
第一章 绪论 1
1.1 研究背景和意义 1
1.2 微流控技术研究现状 1
1.2.1 主动微流控 1
1.2.2 被动微流控 2
1.3 黏弹性微流控技术 2
1.4 微流控芯片 4
1.5 有限元分析 4
1.6 本论文的主要研究任务 5
第二章 粒子黏弹性聚焦的物理机制、器件制备及实验表征方法 6
2.1 粒子黏弹性聚焦的物理机制 6
2.2 微流控芯片的制作 9
2.3 实验溶液的配置 12
2.4 粒子聚焦表征平台 13
第三章 粒子黏弹性聚焦机理研究 15
3.1 芯片结构设计与制造 15
3.2 实验内容及结果分析 16
3.2.1 溶液黏度对粒子聚焦的影响 16
3.2.2 突扩结构对粒子聚焦的影响 21
3.2.3 粒子尺寸对粒子聚焦的影响 24
3.2.4 流道尺寸对粒子聚焦的影响 26
第四章 仿真计算 28
4.1 COMSOL基本介绍 28
4.1.1 COMSOL仿真基本流程 28
4.2 仿真结果 31
第五章 总结与展望 34
5.1 工作小结 34
5.2 展望 34
致谢 35
参考文献 36
被动型微流控粒子聚焦器件的开发及聚焦机理研究
1、绪论
1.1 研究背景和意义
通常把以层流或低雷诺数为主要特征的微流体操控简称为微流控[[1]],几年前,美国的一个杂志在一篇文章上把微流控芯片实验室列为“改变未来的七种技术之一”。近几十年来,随着微纳技术和机械制造技术的高速发展,微流控技术也进入了发展的黄金时期,由于其对微粒的可操纵性能强,能富集待测样品液体中微粒,包括稀释后血液中的细胞,工业废水中的颗粒等等,同时,它能依靠样品液中微粒尺寸的不同而分选出不同的微粒,进而将其进一步的提纯,已广泛应用于临床医学、微生物学、分析化学、环境学等领域。在该技术发展过程中,外加力场诸如电场(电泳和介电泳)、声场、磁场的引入,丰富了对实验样品的处理手段,能依靠外部条件选择最合适的实验方法。而因为传统制造技术发展而来的微过滤、鞘液夹流、确定性侧向偏移等技术,在粒子操控方面取得了令人瞩目的研究成果。但上述技术的实施过程必然会出现复杂器件集成、被控对象损伤或不可重复利用、干扰大等一系列系统性问题。另一方面,在许多实验研究过程中,由于黏弹性流体在日常生活中的普遍程度,实际处理的样品液很多都会存在非牛顿流体的性质,黏弹性正是其中的一种,因此,微流控技术是十分必要的,特别是与流体特性密切相关粒子的黏弹性操控技术,是微流控技术研究中必不可少的重要组成部分。被动型微流控技术不需要外加耗能力场,流道结构简单,现有的PDMS技术可以很好地制作出微流控芯片,操作简单,控制简单。掌握被动微流控技术中粒子在黏弹性溶液中的操控技术的机理可为微流控样品的处理开发新的手段,能简单高效地解决复杂器件集成、干扰大、被控对象损伤等问题。
剩余内容已隐藏,请支付后下载全文,论文总字数:30325字
该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;