论文总字数:50531字
摘 要
随着FACTS、HVDC装置在电力系统中的广泛应用,传统的机电暂态仿真也不能适应复杂电网的仿真需求,而更精细的电磁暂态仿真因其仿真规模受限,不能应用于大电网的仿真,而仅对局部电网的仿真有事并不能真实模拟局部网络对大电网的影响。本文基于上述问题进行了关于电力系统机电—电磁暂态混合仿真的研究,以协调复杂大电网仿真中效率、精度等各项问题。
本文首先针对电磁、机电暂态仿真基本概念及其差异进行分析,提出了混合仿真以及混合仿真接口的概念。其次,本文针对仿真接口的各个功能模块进行了较为细致的理论研究,其中包括接口划分依据、网络等值方法、时序交互策略等相关原理和算法。随后,本文基于上述理论研究在Matlab/Simulink平台上实现了仿真接口的实现,测试相关功能模块的各项性能,并通过算例进一步验证仿真接口的性能。最后,针对接口实现过程中所存在的问题,本文提出了仿真接口在精度和效率上的改进思路和方法,并对仿真接口的进一步研究做了展望。
关键词:混合仿真 仿真接口 网络等值 交互时序 相量提取
Abstract
With the wide application of FACTS and HVDC devices in power systems, traditional electromechanical transient simulation cannot meet the requirements of complex power grids simulations, and finer electromagnetic transient simulations cannot be applied to large power grids because of the restrict of simulation scale.
Other than this, the simulation of the local grid does not really simulate the impact of the local network on the large grid. Based on the above problems, this paper studies the electromechanical-electromagnetic transient hybrid simulation of power system to coordinate the efficiency and accuracy of complex large-scale power grid simulation.
Firstly, this paper analyzes the basic concepts and differences of electromagnetic and electromechanical transient simulation, and proposes the concept of hybrid simulation and hybrid simulation interface. Secondly, this thesis conducts a more detailed theoretical study on each functional module of the simulation interface, including interface division basis, network equivalent method, time series interaction strategy and other related principles and algorithms. In addition, based on the above theoretical research, this paper implements the simulation interface on Matlab/Simulink platform, tests the performance of related functional modules, and further verifies the performance of the simulation interface through examples. Finally, aiming at the problems existing in the interface implementation process, this paper proposes the improvement ideas and methods of the simulation interface in terms of accuracy and efficiency, and forecasts the further research of the simulation interface.
KEY WORDS: hybrid simulation, simulation interface, network equivalent, interaction time, phasor extraction
目 录
摘要 ……………………………………………………………………………………………Ⅰ
Abstract ………………………………………………………………………………………Ⅱ
- 绪论 ……………………………………………………………………………………1
1.1 引言 …………………………………………………………………………………1
1.2 研究现状 ……………………………………………………………………………1
1.3 研究内容及目的 ……………………………………………………………………2
- 机电—电磁混合仿真概述 ……………………………………………………………4
2.1 机电暂态仿真方法 …………………………………………………………………4
2.2 电磁暂态仿真方法 …………………………………………………………………4
2.3 机电—电磁混合仿真 ………………………………………………………………6
- 混合仿真接口原理 …………………………………………………………………9
3.1 接口位置选择 ………………………………………………………………………9
3.2 等值参数求取 ………………………………………………………………………10
3.2.1 机电侧网络等值方法 ……………………………………………………10
3.2.2 电磁侧网络等值方法 ……………………………………………………16
3.3 接口交互时序 ……………………………………………………………………21
3.3.1 串行交互时序 ……………………………………………………………21
3.3.2 并行交互时序 ……………………………………………………………25
3.3.3 迭代交互时序 ……………………………………………………………29
3.4 基波相量提取 ……………………………………………………………………30
3.4.1 Dq-120均方根法 …………………………………………………………30
3.4.2 改进型Dq-120均方根法 ………………………………………………33
3.5 数据外推及插值方法 ……………………………………………………………34
- 机电—电磁混合仿真实现 …………………………………………………………39
4.1 接口模型搭建 ……………………………………………………………………39
4.1.1 基波相量提取算法实现 …………………………………………………40
4.1.2 数据外推算法实现 ………………………………………………………42
4.1.3 等值模型搭建 ……………………………………………………………44
4.1.4 仿真接口模型实现 ………………………………………………………45
4.2 仿真网络搭建 ……………………………………………………………………46
4.2.1 机电侧网络搭建 …………………………………………………………46
4.2.2 电磁侧网络搭建 …………………………………………………………47
4.2.3 光伏电站模型搭建 ………………………………………………………47
4.3 算例分析 …………………………………………………………………………47
4.3.1 电磁侧网络故障场景仿真 ………………………………………………47
4.3.2 机电侧网络故障场景仿真 ………………………………………………50
- 结论与展望 ………………………………………………………………………52
5.1 结论 ………………………………………………………………………………52
5.2 展望 ………………………………………………………………………………52
参考文献(References) …………………………………………………………………54
致谢 …………………………………………………………………………………………57
剩余内容已隐藏,请支付后下载全文,论文总字数:50531字
该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;