论文总字数:30893字
摘 要
从上个世纪末以来,风能逐渐成为最有前景的清洁能源。世界风机数量增长迅速,风能已成为主要能源之一。中国风电产业虽然起步较晚,但是发展速度迅速,风电场数量迅速增加,逐渐成为风电大国,目前中国的风机总数与风机增长速度稳居世界第一。
风电场的迅速发展也带来了技术上的革命,为了使风电场的发电效率增大,可以从风机结构、风电场布局等方向进行优化。其中风电场布局优化分为宏观布局优化与微观布局优化,宏观布局优化包括对风电场选址等方面的优化,而微观布局主要是指宏观选址之后,在该区域内通过对风机的排列进行优化而让风电场效率达到最大。本文主要对微观布局进行研究。
本文采用遗传算法对风电场布局优化进行求解。首先通过建立Jensen尾流模型分析风速,建立功率输出模型分析风机的功率输出,最终建立以风电场最大功率输出为优化目标的布局优化模型。在风机数量以及风电场面积一定的前提下,通过改进遗传算法进行求解,获得风电场最大功率输出。
本文在变方向非均匀风的情况下在10×10的网格模型下进行仿真,分别通过对风机数为15、20、25、30、35、40六种情况进行求解,每组实验通过150代的迭代得到风电场最大输出功率,并记录迭代过程以及最大功率输出时的风机布局。最终再通过与随机键遗传算法得出的结果对比验证,得出结论。
为了选择合适的风机类型,本文用随机键遗传算法分别对两种风机在不同的风机数量下进行对比实验,通过比较两者的单位发电成本,来确定风机类型的选择。
关键词:风机布局;尾流模型;优化模型;遗传算法;风机类型
ABSTRACT
Since the end of the last century, wind energy has gradually become the most promising clean energy source. The number of wind turbines in the world has grown rapidly, and wind energy has become one of the main energy sources. Although China's wind power industry started late, its development speed is rapid, and the number of wind farms has increased rapidly. It has gradually become a major wind power country. At present, the total number of wind turbines and wind turbines in China ranks first in the world.
The rapid development of wind farms has also brought about a technological revolution. In order to increase the power generation efficiency of wind farms, it can be optimized from the direction of wind turbine structure and wind farm layout. The layout optimization of wind farms is divided into macro layout optimization and micro layout optimization. Macro layout optimization includes optimization of wind farm location selection. Microscopic layout mainly refers to the arrangement of wind turbines in the region after macro site selection. Optimize to maximize wind farm efficiency. This thesis mainly studies the micro layout.
In this thesis, the genetic algorithm is used to solve the wind farm layout optimization. Firstly, the wind speed is analyzed by establishing the Jensen wake model, and the power output model is established to analyze the power output of the wind turbine. Finally, the layout optimization model with the maximum power output of the wind farm as the optimization target is established. Under the premise of the number of wind turbines and the area of the wind farm, the improved genetic algorithm is used to obtain the maximum power output of the wind farm.
In this thesis, the simulation is carried out under the 10×10 grid model under the condition of non-uniform wind in the direction, and the six cases of the number of wind turbines are 15, 20, 25, 30, 35, 40, respectively. The generation iterations yield the maximum output power of the wind farm and record the iterative process and the wind turbine layout at maximum power output. Finally, through the comparison with the results obtained by the random key genetic algorithm, the conclusion is drawn.
In order to choose the appropriate wind turbine type, this thesis uses the random key genetic algorithm to compare the two types of wind turbines under different wind turbine numbers, and compare the unit power generation costs to determine the wind turbine type.
KEYWORDS: Wind turbines layout; Optimization model; Improved genetic algorithm;Wind turbine type
目 录
摘 要 I
ABSTRACT II
目 录 III
第一章 绪论 1
1.1课题研究背景及意义 1
1.1.1课题研究背景 1
1.1.2课题研究意义 2
1.1.3课题研究现状 2
1.2论文主要工作 4
第二章 风场风机布局优化模型 6
2.1模型条件及假设 6
2.2风机尾流模型 7
2.3风机功率输出模型 8
2.4风机优化模型 11
2.5风机类型选择模型 12
第三章 优化模型求解算法 13
3.1遗传算法 13
3.2随机键遗传算法 16
3.3改进的遗传算法 18
3.3.1初始种群的产生 18
3.3.2变异的改进 18
第四章 风资源场景与仿真实验 20
4.1 风场景与实验参数 20
4.2 实验结果 22
4.2.1 改进遗传算法实验结果 22
4.2.2随机键遗传算法实验结果 25
4.2.2风机类型选择模型实验结果 28
4.3小结 29
第五章 总结及展望 32
参考文献 33
致 谢 35
剩余内容已隐藏,请支付后下载全文,论文总字数:30893字
该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;