磁耦合谐振式无线电能传输中的高频逆变电源的设计与分析

 2022-02-16 20:33:36

论文总字数:29722字

摘 要

学生姓名:文昆雷

指导老师:谭林林

磁耦合谐振式无线电能传输技术是一种基于基本电磁场理论的新型的电能传输技术,它具有传统技术所不具备的无线、灵活、安全、可靠的特点,同时它的传输距离更长,效果更好效率更高。目前,磁耦合谐振式无线电能传输技术处于研发改进阶段主要用于移动设备的无线供电和灵活充电,同时在医学与人工植入设备上有很大的应用前景。

随着社会的进步与科学技术的发展,人们对无线电能传输所能提供的功率和效率的要求在逐渐的提高,那么找到高效且能够提供较大的功率的变频电路变得十分的迫切。现在常见的变频电路有振荡式变频电路、逆变式变频电路和乙类功放式变频电路。但振荡式变频电路的效率较低大概为30%左右,乙类功放式变频电路的功率很低,相对来说逆变式变频电路是高效大功率变频电路的首选。逆变式变频电路形式的选取根据实验对波形、效率以及可行性的要求,并在多方考察的情况下得到选用交直交型逆变式全桥变频电路。

下面详述作者主要做的工作:

1)关于高频电源的设计部分,首先逆变是选用的高频可控硅整流元件(晶闸管),在控制输出电流频率的器件可选择UCC3895作为信号发生器,并利用IR2110功率放大器件将UCC3895输出的信号放大以保证晶闸管器件能够识别。在完成基本的变频电路设计之后,利用软件绘制出相应的PCB板图,将PCB板图打印焊接好相关元器件之后应用于后续实验的电路中。

2)关于磁耦合式无线电能传输部分则是先分析其基本的电磁理论并进行建立简单的模型理论分析无线电能传输中的效率,并绘制出曲线图。在完成模型建立之后可以设计简单的实验进行验证,讲得出的数据进行分析并与理论分析得到的图进行比较从而判断出此类无线电能传输的效率的规律以及相关影响因素。

关键词:磁耦合谐振式;高频电源设计;无线电能传输效率实验;磁场分析与建模

Design and Analysis of magnetically coupled resonant wireless power transmission of high-frequency inverter power source

ABSTRACT

Abstract: Magnetic coupling resonant wireless transmission technology is a based on basic theory of electromagnetic field of new type of electric power transmission technology, it has a traditional electric can transmission technology do not have wireless, flexible, safe, reliable characteristics. At present, the magnetic coupling resonance type radio transmission technology in the research and development phase is mainly used for wireless power supply and flexible charging of mobile devices, while the medical and artificial implants have a great application prospects.

With the development of society and the progress of science and technology, people on the radio to transmission can provide power and efficiency requirements gradually increase, then find efficient and able to provide larger power inverter circuit becomes very urgent. Now the common frequency conversion circuit has oscillation frequency conversion circuit, the inverter frequency conversion circuit and the second class power amplifier frequency conversion circuit. But the efficiency of the oscillating frequency conversion circuit is about 30%, and the power of the class B amplifier is very low, and the inverter circuit is the first choice of high power inverter circuit. Frequency conversion type inverter circuit and a half bridge inverter circuit and a full bridge inverter circuit, half bridge inverter circuit is very obvious shortcomings and is not applicable to high power inverter circuit and waveform quality relative to the full bridge inverter circuit has a certain gap.In order to complete the simulation experiment of the magnetic coupling resonance radio transmission, we select the full bridge inverter circuit as the high frequency power supply. The following details of the work done by the author:

1) On the high frequency power supply is designed, in part, the first inverter is the selection of high frequency silicon controlled rectifier (SCR) in control frequency of the output current of the device can choose phase shifting PWM controller ucc3895 as control signal generator, and the use of IR2110 power amplifier devices will ucc3895 output signal amplification to ensure thyristor devices to identify. After the completion of the basic frequency conversion circuit design using Altium designer software principle chart drawing out, and draw the corresponding PCB diagram of the printing of welding related components in the follow-up experiment circuit.

2) On the part of the magnetic coupling radio transmission, the basic electromagnetic theory is analyzed and the simple model theory is built to analyze the efficiency of radio transmission. After the completion of the establishment of the model can design simple experiments are performed to verify, say that the data analysis and with theoretical analysis of the graph obtained were compared to determine the magnetic coupled wireless energy transmission efficiency of laws and relevant influencing factors.

Key words: Coupled magnetic resonances; Design of high frequency power supply; Radio energy transmission efficiency test; Magnetic field analysis and modeling

目录

摘要 I

ABSTRACT II

第1章 绪论 1

1.1 无线电能传输技术的发展进程 1

1.2 无线电能传输技术的分类 2

1.2.1电磁感应耦合式无线电能传输技术 2

1.2.2磁耦合谐振式无线电能传输技术 3

1.2.3微波辐射式无线电能传输技术 3

1.2.4激光方式无线电能传输技术 3

1.3 无线电能传输技术的应用 4

1.4 变频电路的分类 4

1.5 论文的研究目的和意义 5

1.6 论文主要研究的内容 5

第2章 磁耦合谐振式无线电能传输技术的基本原理及设计 6

2.1 基本理论和模型 6

2.1.1基础电磁场理论 6

2.1.2 电磁场的电磁辐射问题及解决方法 8

2.1.3 磁耦合谐振式系统的串联等效电路模型 9

2.2 变频电路的原理 11

2.2.1 整流电路原理 11

2.2.2 逆变电路部分 12

2.3 驱动电路 13

2.3.1 驱动电路主控器件UCC3895 13

2.3.2 放大器IR2110 13

2.4 本章总结 14

第3章 发射端变频电路的设计以及基本演示实验的初步设计 15

3.1基本演示实验的电路设计 15

3.2 驱动电路部分设计图 16

3.3高频电源的Altium designer电路图的绘制及PCB板的制作过程 17

3.3.1 Altium designer的使用方式 17

3.3.2 电路板的绘制结果 20

3.4本章小结 21

第4章 磁耦合谐振式无线电能传输实验及分析 23

4.1 实验的设计及搭建 23

4.2 实验数据的采集及分析 24

4.2.1 恒距离情况下传输效率与负载之间的关系 27

4.2.2 定负载情况下距离与传输效率之间的关系 28

剩余内容已隐藏,请支付后下载全文,论文总字数:29722字

您需要先支付 80元 才能查看全部内容!立即支付

该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;