论文总字数:26768字
摘 要
我国的供热能耗,尤其是北方的供热一直是一个重要课题。随着经济的发展,城镇的增多,热负荷越来越大,而供热能耗也随之越来越高。同时,区域供热还带来了愈发严重的大气污染。为了改善现状,我国开始大力推广清洁能源的使用,调整能源结构。以此为背景,加入了清洁能源供热的多热源联合供热联网技术,一种具有节能减排效益的新型热网系统技术,得到了更为广泛的应用和发展。其中常见的一个形式就是多源枝状热网。本文研究了多源枝状热网的动态特性,并且对此类系统提出了一些控制方法的见解,这对我们后续研究控制方案和优化系统有指导性的意义。
本文选取了一个三源三用户的枝状热网作为研究对象,其中三个热源为蓄热罐形式,蓄热罐白天加入热网供用户使用,夜晚储热,三个蓄热罐的热量分别来自于锅炉、热泵、太阳能。在为动态建模选取结构参数时,蓄热罐的参数根据运行中的需求选取,管道和用户的数据选取现实中常用的管道和换热器的参数。之后使用集总参数法,根据各模块的机理建立它们各自的数学模型,并在SIMULINK平台上搭建了管道,换热器,蓄热罐等的动态模型,分别了解它们的动态特性,分析了入口的温度和流量分别阶跃时对管道出口温度以及用户换热量的影响以及动态响应的时间。完成单个的研究后,将这些模型各自封装为子系统,组合在一起建立出多源枝状热网的模型,在此模型的基础上研究热网整体的动态特性,即热网三个热源出口流量分别阶跃时,三个用户换热器各自管侧出口温度的变化以及响应时间。
本文控制的量有两个:(1)蓄热罐内部的控制,采取PID的方法可以有效的稳定住需要控制的出口参数。(2)热用户换热量(直接表现为热用户换热器的管侧出口温度)的控制,采取辨识的方法把热源出口流量阶跃和用户出口温度的关系转化为传递函数的形式,在此基础上采用预测控制得到相应的控制策略。
关键词:多热源,枝状热网,仿真,预测控制
ABSTRACT
The energy consumption of heating in China, especially the heating in the north, has always been an important issue. With the development of economy, with the increase of towns, the heat load is increasing, and the energy consumption for heating is also increasing. At the same time, regional heating has also brought about more serious air pollution. In order to improve the status quo, China has begun to promote the use of clean energy and adjust the energy structure. Based on this background, the multi-heat source combined heating network technology, a new type of thermal network system technology with energy-saving and emission-reduction benefits, has been more widely used and developed. One of the common forms is a multi-source branched heat network. This paper studies the dynamic characteristics of multi-source branched heat networks, and proposes some control methods for such systems. This has guiding significance for our subsequent research on control schemes and optimization systems.
In this paper, a three-source and three-user branch heat network is selected as the research object. Three heat sources are in the form of a heat storage tank. The heat storage tank joins the heat network for users during the day and stores heat at night. The heat comes from various clean energy sources. When selecting the structural parameters for dynamic modeling, the parameters of the thermal storage tank are selected according to the requirements in the operation, and the data of the pipeline and the user select the parameters of the commonly used pipelines and heat exchangers in reality. Later, using the lumped parameter method, they established their respective mathematical models according to the mechanism of each module, and built dynamic models of pipelines, heat exchangers, heat storage tanks, etc. on the SIMULINK platform, respectively to understand their dynamic characteristics and analyze the entrances. The temperature and flow rate of the pipe, respectively, affect the outlet temperature of the pipe and the user's heat transfer amount, as well as the dynamic response time. After completing a single study, each of these models was packaged as a subsystem, and a model of a multi-source branched heat network was established by combining them. Based on this model, the dynamic characteristics of the entire heat network were studied, ie, three heat source outlets of the heat network. When the flow rate is stepped separately, the change of the outlet temperature of the tube side of each of the three user heat exchangers and the response time.
There are two quantities controlled in this paper: (1) The internal control of the heat storage tank, and the method of adopting PID can effectively stabilize the exit parameters that need to be controlled. (2) The control of the heat exchange rate of the hot user (directly expressed as the outlet temperature at the tube side of the heat consumer heat exchanger). The identification method is used to convert the relationship between the heat source outlet flow step and the user outlet temperature into the form of a transfer function. Based on this, a suitable control strategy is obtained by using predictive control.
Key words: multiple heat sources, dendritic heating network, simulation, predictive control
目 录
摘 要 I
ABSTRACT II
第一章 绪论 1
1.1课题研究的背景及意义 1
1.1 国内外研究现状 2
1.2 本文研究的主要内容 3
第二章 多源枝状热网的动态建模 5
2.1 动态建模的原理及方法 5
2.2 系统选型设计 5
2.3 系统各模块焓温数学模型建立 7
2.3.1 管道数学模型 7
2.3.2 换热器数学模型 9
2.3.3 蓄热罐数学模型 10
2.3.4 交汇点数学模型 10
2.4 系统压力流量数学模型建立 11
2.5 系统仿真模型的实现 12
2.5.1 仿真平台介绍 12
2.5.2 焓温仿真模型 12
2.5.3 压力流量仿真 16
2.5.4 热网系统仿真模型 19
2.5.5 平衡点的计算 20
2.6 本章小结 20
第三章 多源枝状热网的动态特性 21
3.1 各模块的动态特性 21
3.1.1 稳态工况 21
3.1.2 管道动态特性 21
3.1.3 换热器动态特性 22
3.2 热网的动态特性 24
3.3 本章总结 29
第四章 多源枝状热网的控制 30
4.1 系统的辨识 30
4.2 系统的控制 31
4.2.1 预测控制介绍 31
4.2.2 控制模块搭建 32
4.2.3 控制后动态特性 32
4.3 本章小结 35
第五章 总结展望 36
致 谢 37
参考文献 38
第一章 绪论
1.1课题研究的背景及意义
伴随着社会的进步发展,环境污染严重,传统能源也日渐枯竭。为了应对这一系列的危机,我国提出了能源转型,用更多更大规模的清洁能源替代化石能源。在我国电力的“十三五”规划中就将促进能源转型,加大能源利用率划入了主要问题。结合我国雾霾严重的国情,清洁能源替代化石能源已经成为了我国能源改革的一条必经之路。“十三五”规划中提出,以后的电力系统发展中要将单一的化石能源消耗转化成为化石-清洁能源的消耗或者纯清洁能源的消耗。然而,我国在利用化石燃料供暖、发电方面的技术虽然走在世界前列,但是对清洁能源的利用技术仍存在不足。而且对清洁能源的使用过程中,能源自身也存在一些问题。如风能太阳能发电供暖受天气影响,欠缺稳定性;水能受到地域的限制。因此在大规模的供暖需求中,我国仍不能完全脱离化石能源,但是我国可以先采取化石能源与清洁能源联合供热的方法,其中较为典型的就是多热源联网技术。多热源联网技术允许了多个热源的存在,就可以使用传统的化石能源和清洁能源一起供热。
除此之外,在传统的单热源供热技术中,为了维持尖峰负荷时所需求的供热,往往需要给供热设备设计相当大的装机容量,导致了单热源供热的投资很大。而多热源联网技术就可以弥补单热源的这一缺陷,通过调节多个接入的热源的供热参数来维持尖峰负荷下所需求的供热量。这大大降低了区域供热系统的投资,增大了区域供热的经济效益。另外,多热源联网还具有提高供热安全性的优点:当其他某一热源供热不足(或停止供热时),其他热源可以进行补充,大大提高了供热的稳定性,这种特性也对单一的清洁能源稳定供热的技术要求有所降低。
剩余内容已隐藏,请支付后下载全文,论文总字数:26768字
该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;