论文总字数:30665字
摘 要
将聚变燃料氘以气体形态高压充入固壳空心靶丸及柱形靶腔是激光间接驱动惯性约束聚变实验中的关键过程。受限于靶丸靶腔微小体积,现有实验测量手段不能实时监测靶丸靶腔中的气体状态。为此,基于适用于广泛克努森数范围的统一流动模型(Unified Flow Model),本文理论研究了靶丸保气过程以及靶腔充放气过程的气体流动特性以及影响规律,获得了毛细管尺寸与靶丸保气半寿命的关联式以及靶腔安全充/放气的指导准则;以光滑微通道内的压力驱动泊肃叶流为例,验证了格子Boltzmann方法计算微尺度流动的正确性;采用介观格子Boltzmann方法(LBM)对二维靶腔充气过程进行了数值模拟研究,将LBM结果与统一流动理论模型结果进行了对比,获得了良好的一致性;最后,采用MFC框架编制了基于统一流动理论模型的微小容器变压充放气程序。本文主要研究结论如下:
(1)对于未封装毛细管的靶丸,在不同开孔直径下的保气半寿命的比值与开孔直径比值的四次方成反比。对于封装毛细管的靶丸,采用不同几何参数的毛细管时,其保气半寿命的比值与毛细管内径比值的N次方成反比,与毛细管长度比值成正比,其中N∈(3,4)。
(2)增加靶腔充放气速率,会使得靶腔内外压差过大,发生破裂;而减小靶腔体积、增加气体粘度、增加毛细管直径d和减小毛细管长度l能够提高靶腔充放气过程的临界压强变化速率Φc,增加靶腔的安全系数,使其不易发生破裂;
(3)改变毛细管截面形状,充放气过程中靶腔内外压强变化的基本规律并不改变,会在充气初始阶段以及放气最终阶段出现最大压差,但是随着毛细管截面偏离圆形,靶腔内外压差最大值ΔPmax增加,靶腔的安全系数降低,更易发生破裂;
(4)利用格子Boltzmann方法模拟结果表明:二维靶腔充气过程中,靶腔内部压力分布均匀。与统一流动模型求解结果相比,靶腔内外压差变化趋势相同,仅峰值及其出现时间稍有偏差,且在可接受范围内。
关键词:靶丸;靶腔;充放气过程;统一流模型
Abstract
It is a key process in the experiment of inertial confinement fusion of laser to fill the target and the hohlraum with gas in high pressure. Limited by the small size of the target and the hohlraum, the existing experimental means of measurement can not monitor gas inside in real-time. Based on the unified flow model, this paper studies the gas flow characteristics and the influence factors during the gas retention process of the target and the inflation and deflation process of the hohlraum. The relationship between the capillary size and the gas retention half life of target is obtained, as well as the guiding criteria for the inflation and deflation of target and hohlraum. The correctness of lattice Boltzmann method in micro-flow is verified by simulating pressure - driven Poiseuille Flow in smooth microchannel. Then the numerical simulation of inflation process of the two – dimensional hohlraum is carried out by using the lattice Boltzmann method and a good consistency with the results of theoretical analysis is obtained. Finally, a software was programmed based on the MFC framework to calculate the peak value of the differential pressure inside and outside the tiny container during inflation and deflation process, which can also visually show the process of pressure change. The main conclusions of this paper are as follows:
(1) For target without capillary, the ratio of the half-life time of gas retention at different aperture diameters is inversely proportional to the fourth power of the aperture ratio. For target with capillary mounted on its surface, the ratio of the half-life time of gas retention is inversely proportional to the Nth power (N∈(3,4)) of ratio of the inner diameter of the capillary and proportional to the capillary length ratio.
(2) The increase of the volume of the hohlraum, gas viscosity, capillary diameter d and the decrease of the length l will result in the increase of the critical pressure change rate Φc of the hohlraum, which means the fracture is less likely to occur.
(3) The change of the shape of the capillary cross-section will not affect the basic law of inflation and deflation process. The peak value of the differential pressure will occur in the initial stage of gas-filling process and the final phase of gas-releasing process. However, as the capillary cross section deviates from the circle, the peak valueΔPmax of the hohlraum is increasing, which means the fracture is more likely to occur.
(4) The simulation based on lattice Boltzmann method shows that the pressure distribution of the target cavity is uniform in the two-dimensional hohlraum. Compared with the results of the unified flow model, the trend of the pressure difference inside and outside the target cavity is similar, only the peak and its occurrence time are slightly deviated within an acceptable range.
KEY WORDS: target, hohlraum, inflation and deflation process, unified flow model
目 录
摘 要 I
Abstract II
第一章 绪论 1
1.1 课题研究背景及意义 1
1.2 微纳尺度流动概述 3
1.3 本论文研究内容 4
1.4 本章小结 5
第二章 技术途径及方法 6
2.1 适用于广泛Knudsen数范围的统一流理论模型 6
2.2 格子Boltzmann模型 7
2.2.1 数学模型 8
2.2.2 边界条件 10
2.2.3 模型验证 11
2.3 本章小结 12
第三章 靶丸保气过程中气体流动行为研究 13
3.1 基于统一流模型的靶丸保气过程的理论分析研究 13
3.2 靶丸保气性能强化研究 15
3.3 本章小结 16
第四章 靶腔充放气过程中气体流动行为研究 17
4.1 基于统一流模型的靶腔充放气过程的理论分析研究 17
4.2 影响因素分析 19
4.2.1 毛细管尺寸 19
4.2.2 靶腔体积 20
4.2.3 环境温度 20
4.2.4 毛细管截面 21
4.3 基于格子Boltzmann方法的二维靶腔充放气过程研究 24
4.4 本章小结 25
第五章 基于MFC框架的微小容器充放气程序的编制 27
5.1 基于对话框的应用程序 27
5.2 图形支持 28
5.3 微小容器充放气过程模拟程序的编制要点 29
5.4 本章小结 30
第五章 总结和展望 31
致 谢 32
参考文献 33
第一章 绪论
- 课题研究背景及意义
可控聚变能利用是解决能源日益匮乏问题、实现可持续性发展的理想途径,而惯性约束聚变(ICF)方法是实现可控聚变反应的一种重要手段,同时在国防军工、基础科学研究等方面也具有重要的应用,已经受到了美国、俄罗斯、法国等国际大国的广泛重视。ICF的基本思想是利用高功率高能量密度的激光提供的能量使微型靶丸装填的氘氚燃料(DT)形成等离子体,在极短时间内,燃料由于自身惯性作用还来不及向四周飞散,向心爆聚被压缩到高密度、高温状态,从而发生聚变反应[1]。
ICF靶丸内爆包括形成氛围、压缩、点火和燃烧四个阶段。在第一阶段,来自多个高功率激光束或X射线的能量脉冲短时间同步辐照装填氘氚燃料(DT)的微型球状靶丸外壳,快速加热靶丸表面使其烧蚀甚至蒸发,同时电离燃料并在靶丸周围形成等离子体包络。在第二阶段,烧蚀的表面材料向外爆炸冲击产生相应的内部反应推力和内爆,伴随着的冲击波压缩并加热靶丸芯部。同时,热能也向内传递,提高芯部温度。在这很短的时间内,燃料的惯性将燃料限制在靶丸中。在激光脉冲作用的最终阶段,即点火阶段,燃料芯部的密度超过1030颗粒/m3,温度达到108 K,这足以引起燃料融化燃烧。为使聚变在靶丸破裂之前发生,必须保持氘离子和氚离子在一起的时间足够长,这个时间通常小于1纳秒。最后,燃烧反应从中心热斑迅速扩散至整个压缩燃料,产生的能量是驱动源所需能量的许多倍。
剩余内容已隐藏,请支付后下载全文,论文总字数:30665字
该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;