论文总字数:25690字
摘 要
超临界火电机组在电网调峰任务中发挥着重要作用,深度调峰时的锅炉运行安全性问题需要格外重视。在对实际运行的锅炉检修时,发现水冷壁存在焊瘤可能会导致酸洗时流量不足,造成安全隐患。而低负荷运行时如发生流量降低问题同样可能会导致超温等安全性问题。本文针对酸洗工况采用数值计算的方法分析了影响焊瘤阻力系数的因素,并以某超临界锅炉水冷壁为对象计算了焊瘤对流量分配的影响。
采用数值模拟方法对酸洗工况下的焊瘤进行建模,共建立了两种截面形状下三种不同分布位置的有焊瘤管道模型,分析了焊瘤存在时管道内的流场,并计算出不同形状焊瘤的阻力系数,分析了截面形状和分布位置对焊瘤阻力系数的影响。数值模拟计算结果表明,焊瘤截面形状越符合流场流动方向,焊瘤阻力系数越小;相同通流面积时,对流场扰动点越多,焊瘤阻力系数越大。
采用水动力计算方法,以某超临界锅炉水冷壁下炉膛前墙1至4号管为对象,编写了管组流量分配计算程序。针对该锅炉酸洗工况,对4根管道分别单独添加焊瘤后计算流量变化,结果显示符合焊接标准的最大焊瘤仅会使所在管道流量降低0.14%。在此基础上进一步分析了焊瘤高度对流量的影响,为后续研究提供了方向。
关键词:CFD;焊瘤;阻力系数;流量分配
Abstract
Supercritical thermal power units play an important role in the peaking task of power grids. The safety of boiler operation during deep peaking needs special attention. During the inspection of the actual operation of the boiler, it was found that the presence of the weld on the water wall may cause insufficient flow during pickling, posing a safety hazard. The problem of flow reduction during low-load operation may also cause safety problems such as over-temperature. In this paper, the factors affecting the resistance coefficient of the weldment were analyzed by numerical calculation method for pickling conditions. The influence of the weld on the flow distribution was calculated based on the water wall of a supercritical boiler.
The numerical simulation method was used to model the welds under pickling conditions. A welded duct model with three different distribution positions under two cross-sectional shapes was established, and the flow field in the pipeline when the weld was present was analyzed. The drag coefficient of different shape welds was calculated, and the influence of cross-sectional shape and distribution position on the resistance coefficient of the weld was analyzed. The numerical simulation results show that the more the cross-sectional shape of the welded tumor conforms to the flow direction of the flow field, the smaller the resistance coefficient of the welded joint; the same the flow area, the more the disturbance point of the flow field, the larger the resistance coefficient of the welded joint.
The hydrodynamic calculation method was used to calculate the flow distribution calculation program of the tube group with the tubes 1 to 4 of the front wall of the furnace under the water wall of a supercritical boiler. According to the pickling condition of the boiler, the flow changes were calculated after adding the welded joints to the four pipes separately. The results show that the largest welded joint that meets the welding standard will only reduce the flow rate of the pipeline by 0.14%. On this basis, the influence of the height of the weld on the flow is further analyzed, which provides a direction for subsequent research.
KEY WORDS : CFD ;welding beading ;drag coefficient ;flow distribution
目 录
摘 要 I
Abstract II
第一章 绪论 1
1.1研究背景和意义 1
1.2国内外研究现状及成果 2
1.3本文主要工作 4
第二章 数值模型建模过程 5
2.1ANSYS软件介绍 5
2.2建立几何模型 6
2.3网格划分 8
2.3.1划分基础网格 8
2.3.2网格局部加密 8
2.3.3边界层处理 9
2.4湍流模型 10
2.4.1Spalart-Allmaras模型 10
2.4.2k-ε模型 11
2.4.3k-ω模型 11
2.4.4雷诺压力模型(RSM) 12
第三章 焊瘤阻力计算及其影响分析 13
3.1计算工况 13
3.2湍流模型选用 14
3.3边界条件 14
3.4使用Fluent进行求解 15
3.5数值求解结果验证 16
3.6焊瘤阻力系数计算及分析 17
第四章 焊瘤阻力对并联水冷壁管流量分配的影响 20
4.1计算对象 20
4.2流量分配计算方法 21
4.3流量分配计算结果及分析 22
4.4 焊瘤高度对管道流量影响分析 23
第五章 总结与展望 25
5.1主要结论 25
5.2本文主要创新点 25
5.3工作展望 25
参考文献 27
致 谢 28
第一章 绪论
1.1研究背景和意义
在国家电力行业不断发展的大背景下,风电、太阳能发电等新能源在我国的能源组成结构中已经占据了越来越大的比重,而具有电网调峰功能的燃气蒸汽联合循环发电、抽水蓄能电站等快速调节发电技术发展相对滞后,这种现状使得新能源机组并网难、消纳难的问题越来越突出,对于电网的安全稳定运行带来了很大影响,难以保证电力质量的要求。在中国目前的电网结构中,火力发电机组仍然在装机容量和发电量指标上占据主导地位,因此在面对深度调峰问题时,依靠大型火电机组深度调峰技术来解决当前电力系统中峰谷差距逐渐增大的问题以及保障电网稳定消纳太阳能和风能等新能源是最行之有效的办法[1]。
深度调峰技术是针对电网负荷存在用电高峰和低谷期且峰谷差距较大的问题所应用的调节方法。在进行深度调峰时,太阳能与风能等新能源技术由于其本身的原理性问题无法根据需求大规模调节发电量,此时常规发电厂需要降低出力从而减少发电量以适应电网需求,发电机组在调峰时需要降低运行负荷到电厂锅炉最低稳燃负荷以下。对于超临界工况下运行的机组,特别是机组发电负荷降至30%BMCR甚至更低的负荷时,省煤器入口的给水流量将会接近保护定值,锅炉的水动力情况将会急剧恶化[2]。因此,为了保证燃煤机组在进行深度调峰过程中水动力情况不影响运行安全性,需要对超低负荷工况下的水冷壁介质流动情况进行计算并且分析其影响。
剩余内容已隐藏,请支付后下载全文,论文总字数:25690字
该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;