某商业中心分布式能源系统供能匹配研究

 2021-12-12 13:58:50

论文总字数:31418字

摘 要

以煤为主的特殊能源结构(占75%)导致我国承受着节能减排的巨大压力 [1];以天然气为燃料的冷热电三联供分布式能源系统(CCHP system),具有能源利用率高、低污染低排放的优点,将有利于缓解我国能源紧张局面和面临的环境减排压力。

本文以武汉某商业中心冷热电分布式供能系统为研究热点,对该商业中心的热、冷、电三项负荷需求数据进行分析,选用3台1500kW内燃机为原动机,排气余热作为热泵供热和制冷的热源。为满足实际冷负荷的需求,每台原动机配备了1台制冷量400RT的溴化锂吸收式制冷机和1台就地消纳电力的制冷量800RT的混合离心式制冷机,为满足灵活运行的需要,系统配置了3台离心式制冷及(3*1000RT),总制冷负荷达到6600RT。针对冬季供热工况,每台原动机配备了1台1200kWth的吸收式暖水机,为满足对最大供热负荷的需求,设置3台2000kWth的燃气供热水锅炉,总供热负荷为9600kWth。商业中心总电负荷为20000kW,电力不足部分从电网接入。4-11月份为供冷月份,吸收式冷水机提供基本符合,此后启动混合离心式冷水机供冷,不足部分由离心式制冷机提供;12-3月份为供暖月份,吸收式热水机提供暖气基本负荷,不足部分启动余热锅炉供暖。

根据设备配置和商业中心对冷热负荷的需求,确定了运行方案,对投入CCHP系统前后的经济性进行了分析,证明了CCHP系统具有较大的优越性。分析从电力、天然气使用量两个方面,对供暖、制冷、供电几部分进行模拟计算,再与投入该系统之前,使用单独的设备进行相应的制冷、供暖、供电所需要的资金数进行对比,得出的结论是,引入CCHP系统前天然气费用是1864千元,电力费用是103590千元,引入CCHP系统后天然气费用是17659千元,电力费用是85128千元,即天然气费用增加而电力费用减少,总费用减少了2667千元,因为不论是整机效率还是单机效率CCHP系统都有一定的优越性。

关键词:分布式能源系统;CCHP;供能匹配;经济性。

Abstract

Special energy structure is given priority to with coal (75%) in our country under the huge pressure of energy conservation and emissions reduction. With natural gas as the fuel of cold and hot electricity trigeneration distributed energy system (CCHP system), with the advantages of high efficiency, low pollution and low emissions, will be conducive to relieve the tense situation of China's energy and environmental pressure to reduce emissions.
Based on a commercial center in Wuhan cold hot electricity distributed power system as the research hot spots, the commercial center of hot, cold, electricity load demand data were analyzed, and the selection of 3 units of 1500 KW of internal combustion engine as the prime mover, the exhaust waste heat as a heat source heat pump heating and cooling. In order to satisfy the demand of the actual cooling load, each engine is equipped with 1,400RT refrigerating capacity of lithium bromide absorption refrigerating machine and one on the given a mixture of the refrigerating capacity of the electric power 800 RT centrifugal chiller, to meet the needs of flexible operation, system configuration for three sets of centrifugal refrigeration (3 * 1000 RT), and total cooling load of 6600 RT. For winter heating conditions, each engine is equipped with 1,1200 KWth absorption warm water machine, in order to meet the demand for maximum heating load, set the 3 2000 KWth gas boiler heating water, total heating load of 9600 KWth. Business center of total electrical load is 20000 kw, shortage part of power from the grid access.4 - November month for cooling and absorption chiller provides basic conform to, then started centrifugal chillers, cooling is insufficient part is provided by the centrifugal chiller; 12 - in March for heating, hot water absorption machine heating basic load, prompted in part by the waste heat boiler heating.
According to equipment configuration and commercial center of cold and hot load demand, determines the operation plan, for in the economy are analyzed in the before and after the CCHP system and proves the CCHP system has a bigger superiority. Analysis from two aspects of electricity, gas, heating, cooling, power supply sections for simulation calculation, before and into the system, using separate devices for corresponding refrigeration, heating, power substation, comparing the number of funds, came to the conclusion that the introduction of CCHP system before the gas fee is 1,864 million yuan, the power cost is 103.59 million yuan, after the introduction of CCHP system gas cost is 17,659 million yuan, the power cost is 85,128 million yuan, the natural gas cost increase and reduce the electricity cost, reduces the total cost is 2,667 million yuan, because both the machine efficiency and single efficiency of CCHP system has certain advantages.

Keywords:CCHP building distributed energy systems; equipment selection;

Economic analysis;

目 录

摘 要 1

Abstract 2

1绪论 4

1.1 引言 4

1.2 课题的提出及意义 4

1.3课题国内外研究现状 5

1.4 课题研究内容 6

2 分布式能源系统介绍 7

2.1 概念 7

2.2 特点 7

2.3 系统组成 8

3建筑负荷匹配与系统设计 9

3.1 建筑各项负荷统计 9

3.2 设备选择 10

3.3 系统设计与负荷匹配 12

4 引入CCHP系统前后经济性分析 13

4.1 各项负荷统计、计算 13

4.1.1 电力负荷统计 13

4.1.2 制冷负荷统计 15

4.1.3 供暖负荷统计 17

4.2 负荷分配、功耗计算 20

4.2.1 制冷联运计算 20

4.2.2 供暖联运计算 23

4.2.3 电气联运计算 25

4.2.4 天然气消耗量计算 26

4.3 费用计算 29

4.4 能源价格变化导致费用削减量的变化计算 32

5结论与展望 34

5.1 结论 34

5.1.1 选型结论: 34

5.1.2 经济性结论 34

5.2 展望 35

参考文献 36

致 谢 38

1绪论

1.1 引言

进入21世纪,人类对于能源和矿物燃料的需求量显著增加,由此给人们提出了如何提高能源利用效率、节约能源使用的课题。要解决这一问题,除了提高单台设备的效率外,各种设备组成的系统总效率也非常重要,探索新的能源利用方式也是当前面临的首要任务。

20 世纪 90 年代,世界各国学者、政治家们开始高度重视全球温暖化和全球环境的问题。1997 年 12 月 1 日至 11 日,《联合国气候变化框架公约》的第三次缔约方会议(简称COP3)在日本京都举行。经过与会 150 个国家代表激烈的辩论,达成了一份《京都议定书》,明确了发达国家和“经济转轨国家”减少CO2排放量的具体目标。而以煤炭占一次能源消耗量达70%以上的我国,想要达到这样的目标,就必须要减少煤炭的使用量,积极改变能源结构,促使我国能源从低效高污染型向高效清洁型转换。此时世界上很多有识之士提出用氢能源替代传统碳能源,这样或许能从根本上解决CO2排放问题和全球变暖问题[1]。这将是人类面临的一次能源重大变革。

剩余内容已隐藏,请支付后下载全文,论文总字数:31418字

您需要先支付 80元 才能查看全部内容!立即支付

该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;