含离子聚合物体系的弛豫过程

 2022-06-25 22:53:25

论文总字数:48436字

摘 要

小四号宋体,1.5倍行距)目前学术界对于高分子聚合物的研究已经提出了多种模型假设,其中管道模型在解释缠结态聚合物行为的时候获得了很大的成功,但是对于聚合物更多定量化的数据分析以及参数的定义仍然需要进一步的模拟研究。在缠结聚苯乙烯离聚物的文献[1],数据中有一种粘性缠结链模型的模型,该模型有效地解释了链长和每链离子基团数量(即链上“钩爪”)的分布,而此模型更多的意义在于预测到在一定情况下,可以观测到经典的Leibler双平台。基于这样的实验规律,在该次项目研究中,我们建立了一个简单的三维弹性链用于模拟含离子聚合物,在该链上有一定比例的分布着可以和外界作用的“钩爪”用于模拟聚合物上的所含离子,并且引入了用于模拟真实环境下氢键相同作用的“吸引子”用以和链上的“钩爪”相互作用,通过分子动力学模拟,进行模拟研究含离子聚合物在不同离子浓度和氢键强度下的线性驰豫过程。可以观测到在系统弛豫时间参量G(t)与时间的关系图上存在一个较为平滑的平台,而这个平台的长度则反映了系统中氢键的吸引作用对于含离子聚合物链的牵制与弛豫时间的影响程度。

关键词:分子动力学模拟,含离子聚合物,线性流变学

Abstract

小四号Times New Roman,单倍行距

Many models have been raised to learn more about the properties of polymers in recent research. The tube theory is successful in describing entangled polymers qualitatively, a more quantitative description requires precise and consistent definitions of its parameters.In the literature on entwining polystyrene ionomers, there is a model of a viscous tangled chain model that effectively explains the distribution of chain lengths and the number of ionic groups per chain ( the "claw" on the chain).And the significance of this model is that it predicts that under certain circumstances, the classical Leibler dual platform can be observed.

Based on these results, a simple chain model can be established, On the chain there is a proportion of "knuckles" that can be used to interact with the outside world to simulate the ions contained in the polymer.Molecular dynamics simulations were conducted to simulate the linear relaxation process of ion-containing polymers at different ion concentrations and hydrogen bond strengths. It can be observed that there is a relatively smooth platform on the relationship between the system relaxation time parameter G(t) and time, and the length of this platform reflects the attraction of hydrogen bonds in the system to the containment of ion-containing polymer chains.

KEY WORDS:Molecular dynamics simulations ,Ionic polymer,Linear rheology,

目录

摘要.................................................................................................................................................................I

Abstract......................................................................................................................................II

第一章 研究背景...................................................................................................................................1

1.1 背景介绍...............................................................................................................................1

第二章 Rouse链的引入.......................................................................................................3

2.1 模型建立...............................................................................................................3

2.1.1 Rouse链的建立.........................................................................................3

2.1.2 程序编写....................................................................................................5

第三章 数据处理..................................................................................................................9

3.1 链上单体粒子的运动...........................................................................................9

3.2 应力松弛模量.......................................................................................................12

第四章 离子基团与外界溶剂的作用

4.1 N与Ns的分布.....................................................................................................16

4.2 离子基团的引入...................................................................................................16

第五章 模拟结果与分析........................................................................................................19

5.1 链上单体运动.......................................................................................................19

5.1.1 无吸引子......................................................................................................19

5.1.2 有吸引子......................................................................................................19

5.2 应力松弛模量.......................................................................................................20

5.2.1 无吸引子情况..............................................................................................20

5.2.2 有吸引子情况..............................................................................................22

5.3 计算机实验所遇到的问题分析...............................................................................23

5.3.1 时间间隔的把握..........................................................................................23

5.3.2 随机化与吸引子力的引入方式................................................................24

5.3.3 势能的选择................................................................................................25

致谢 27

参考文献 28

附录A 29

剩余内容已隐藏,请支付后下载全文,论文总字数:48436字

您需要先支付 80元 才能查看全部内容!立即支付

该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;