氧化钛纳米管掺氮的SERS研究毕业论文
2020-07-02 22:54:03
摘 要
21世纪后社会有了很大进步,但不可避免的也存在着许多问题影响着我们的生活质量,例如环境污染严重、食品安全不过关、各种癌症并发等。较为遗憾的是,现今的科学技术手段还有所欠缺,不能及早发现这些问题来防范治疗,导致很多癌症在初期无法准确检测出来、食品上的农药残留也无法精准控制等。因此为了人类的美好生活,我们需要更加精确有效的检测手段,而表面增强拉曼因其具有高灵敏度、无损、不受干扰的优点正好符合我们的要求。表面增强拉曼的衬底一般为Au、Ag等贵金属或半导体材料,虽然金属衬底的灵敏度较半导体材料而言更好,但其存在着价格昂贵和使用范围窄等缺陷,因此需要改善半导体衬底的性能研发出高灵敏度的材料。半导体材料中氧化钛纳米管阵列因其良好的化学惰性和生物相容性而有着很广泛的应用前景和研究价值,缺陷是其影响因子较低,因此我们通过掺杂氮对氧化钛纳米管进行改性处理从而增强其SERS性能。
本工作中,通过阳极氧化法来控制实验电压制备出不同管长、管径的氧化钛纳米管阵列,然后在高温下通入氨气对其进行掺氮处理,用以改善纳米管的性能将光谱响应扩展到可见光区域,从而提高其SERS性能。
关键词:阳极氧化法 二氧化钛纳米管阵列 掺氮 SERS性能
Study on Nitrogen-doped SERS of Titanium Oxide Nanotubes
Abstract
After the 21st century, society has made great progress, but inevitably there are many problems that affect our quality of life, such as serious environmental pollution, food safety, and various types of cancer. What's more regrettable is that the current scientific and technological methods are still lacking, and these problems cannot be detected early to prevent treatment. As a result, many cancers cannot be accurately detected at the initial stage, and pesticide residues on foods cannot be precisely controlled. Therefore, for the better life of human beings, we need more accurate and effective detection methods, and the surface-enhanced Raman because of its high sensitivity, non-destructive, undisturbed advantages just meet our requirements. Surface-enhanced Raman substrates are generally noble metals such as Au and Ag, or semiconductor materials. Although the sensitivity of the metal substrate is better than that of the semiconductor materials, there are disadvantages such as high cost and narrow range of use, and thus there is a need to improve semiconductor linings. The bottom performance develops highly sensitive materials. Titanium oxide nanotube arrays in semiconductor materials have a wide range of application prospects and research values because of their good chemical inertness and biocompatibility. The defect is that their impact factors are low, so we do the titanium oxide nanotubes by doping with nitrogen. Modifications to enhance its SERS performance.
In this work, titanium oxide nanotube arrays with different tube lengths and tube diameters were prepared by controlling the experimental voltage by anodizing method, and then nitrogen was introduced at high temperature to introduce ammonia gas to improve the performance of the nanotubes. Spectral response extends into the visible light region, thereby increasing its SERS performance.
Key Words: Anodizing; Titanium dioxide nanotube array; Nitrogen doping; SERS performance
目 录
摘要…………………………………………………………………………………I
ABSTRACT………………………………………………………………………II
第一章 课题研究背景和国内外研究进展……………………………………1
1.1 SERS(表面增强拉曼)的概述……………………………………………1
1.1.1 SERS的定义及应用…………………………………………………1
1.1.2 SERS的原理…………………………………………………………1
1.1.3 SERS的研究进程……………………………………………………1
1.2 氧化钛纳米管阵列的概述…………………………………………………3
1.3氧化钛纳米管掺氮的SERS机理猜想………………………………………4
第二章 材料的制备与表征………………………………………………………6
2.1 主要试剂和仪器……………………………………………………………6
2.2 氧化钛纳米管阵列的制备…………………………………………………6
2.2.1原料与试剂的预处理………………………………………………6
2.2.2实验装置的组装……………………………………………………7
2.2.3实验步骤……………………………………………………………7
2.3 氧化钛纳米管阵列掺氮实验………………………………………………8
2.4 氮化氧化钛纳米管的表征测试……………………………………………8
第三章 氮化氧化钛纳米管的SERS性能测试及分析………………………9
3.1 TiO2纳米管阵列的SERS性能研究…………………………………………9
3.1.1 TiO2纳米管阵列的SEM分析………………………………………9
3.2.2TiO2纳米管阵列的SERS表征………………………………………9
3.2 TiO2纳米管阵列掺氮处理后SERS性能的研究……………………………10
3.2.1掺氮TiO2纳米管阵列的SEM表征…………………………………10
3.2.2 掺氮TiO2纳米管阵列的SERS表征………………………………11
第四章 结论与展望………………………………………………………………12
4.1 结论…………………………………………………………………………12
4.2 展望…………………………………………………………………………12
参考文献…………………………………………………………………………13
致谢………………………………………………………………………………15
第一章 课题研究背景和国内外研究进展
1.1 表面增强拉曼散射(SERS)的概述
1.1.1 SERS的定义及应用
表面增强拉曼散射(surface-enhanced Raman scattering,SERS)效应是一种探测分子间相互作用和界面特性的高灵敏表面分析技术,通过吸附在粗糙金属表面或金属纳米结构上的分子与金属表面发生的等离子共振(SPR)相互作用而引起的拉曼散射增强现[1]。SERS能够提供分子结构振动的指纹图谱信息[2],通过其独特的振动指纹检测来识别具有单分子灵敏度的化学和生物化合物。其特征在于分子的拉曼强度增加,数量级吸附在粗糙金属等特定表面上相对于溶液或气相中相同数量的非吸附分子所预期的情况而言增加[3]。
表面增强拉曼散射的研究是当下最热门的研究领域之一,其实际应用在不断地向社会需要和人类生活等方面不断贴合,不论是其支撑理论亦或是检测技术手段都在不断的发展进步[4]。作为一种快速发展的光谱方法,相比其他光谱而言,SERS 光谱以其高灵敏度、独特的谱带窄、不受生物样品自发荧光和水的干扰、选择性好、快速实时、抗光漂白[2]和无损检测[5]等优势,使得该技术成为了明确识别化学和生物分析物的最有力的分析工具之一,从而为各种应用开辟了道路。该方法已在生物分析领域、疾病诊断[2]、分子识别检测[4]、环境检测、表面科学、食品安全、痕量及医学检测中得到了越来越重要且广泛的应用。
课题毕业论文、开题报告、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。