微纳光纤微型谐振腔的制备研究毕业论文
2021-03-11 23:34:34
摘 要
作为20世纪最伟大的发明之一,光纤在一个世纪的历史中飞速的发展着,随着人们物质生活的提高以及科学技术的不断进步,人们对光纤技术、光学元件的要求也不断增加。本课题的研究对象主体为微型谐振腔,包括其元件微纳光纤,微球的制备,并且进一步研究其耦合现象。
微纳光纤是指直径在微纳尺度的光纤,至于对微纳光纤及其器件的研究是微纳光学研究领域的热点之一。作为光波导,微纳光纤导光时在其表面有强烈的消逝场,因此微纳光纤是研究光与物质相互作用的良好媒介。微纳光纤也因此被广泛应用于各类谐振腔中,而在众多微型谐振腔中,微纳光纤锥区与微球腔的耦合的Q值最高,因此本课题主要研究方向为微纳光纤与微球耦合。
本论文从对微纳光纤微型谐振腔的研究目的意义,研究历史开始,逐步介绍了微腔的种类,微球腔的原理,微纳光纤的制备方法,微球的制作方法,实验操作台的搭建以及微纳光纤与微球的耦合。最后用实验来证明微纳光学谐振腔在光学传感器领域应用的可能性。
因此本论文主要内容是,制备微纳光纤,微球以及制备微纳光纤微型谐振腔,且完成耦合实验,其中主要元件包括微纳光纤与微球,通过自主搭建的光纤拉制机完成对微纳光纤的制备,运用FSM-100P熔接机高温熔融光纤末端来制备出合适的微球,分别利用实验室正置显微镜、倒置显微镜,多维操作台,光纤微球支架,光谱仪,光源,完成对两种实验台的搭建,分别为正置显微镜实验操作台,倒置显微镜实验操作台,操作多维操作台控制微球于微纳光纤的贴近,观察光谱仪图像变化,完成微纳光纤与微球的耦合实验。通过微纳光纤将光束导入光学微球并限制在其内从而制备出微纳光学谐振腔,进而研究其基本光学特性和探索其在光学传感领域应用的可能性。
关键词:微纳光纤, 微球, 谐振器, 光纤传感器
Abstract
As the greatest invention of the 20th century, fiber in a century of rapid development in the history. With the improvement of people's material life and the continuous progress of science and technology, people on the optical fiber technology, optical components are also increasing requirements. The subject of this study is micro-nano fiber, microsphere and study the coupling phenomenon.
Micro-nano fiber refers to the diameter of the micro-nano-fiber, for micro-nano fiber and it's device research is one of the hot spots in the field of micro-nano. As a light waveguide, micro-nano fiber light guide in it's surface has a strong escape field, so micro-nano fiber is a good medium to study the interaction between light and matter. In many micro-resonant cavities, the coupling value of the micro-nano fiber and the microsphere is the highest, so the main research direction is micro-nano fiber and microsphere coupling.
In this paper, the principle of microsphere cavity, the preparation method of micro-nano fiber, the preparation method of microsphere, the construction of experimental console, the coupling of micro-nano fiber and microsphere are introduced from the purpose of research and the background of the research. Finally, the experiment proved the possibility of the application of the micro-nano optical resonator in the field of optical sensor.
Therefore, the main contents of this thesis are as follows: preparation of micro-nanofibers, microspheres and preparation of micro-nano-fiber micro-resonator, and the completion of coupling experiments, including the main components, including micro-nano fiber and microsphere, through the self-built fiber drawing machine The microspheres were prepared by using the FSM-100P fusion machine at the end of the high-temperature molten fiber. The microspheres were prepared by using a laboratory microscope, an inverted microscope, a multidimensional console, a fiber microsphere, a spectrometer and a light source. The experimental setup of the experimental bench was carried out, namely the orthographic microscope experimental console, the inverted microscope experimental console, the operation of the multi-dimensional control table to control the microsphere in the micro-nano fiber close, observe the spectral image changes, complete the micro-nano fiber and microsphere coupling experiment. The micro-fiber is introduced into the optical microsphere and confined in it to prepare the micro - nano optical resonator, and then the basic optical properties and the possibility of its application in the optical sensing field are explored.
key words:Micro - nano fiber, Microsphere, Resonator, Fiber Optic Sensor
目录
中文摘要 I
Abstract II
目录 i
第一章 绪论 1
1.1课题目的及意义 1
1.2国内外研究历史 2
第二章 谐振腔的原理及制备 3
2.1光学微腔的种类 3
2.2微纳光纤的制备 4
2.3微球的制备及调节 7
2.3.1微球制备方法 7
2.3.2微球的调节 7
2.4操作台的搭建 9
第三章实验操作及研究 11
参考文献 17
致 谢 19
第一章 绪论
1.1课题目的及意义
20世纪以来,随着光纤技术的飞速发展,光学器件被要求实现更多的技术指标,因此基于人们的需求,提出了光学集成器件的概念,而微纳光纤凭借其体积小,制作过程简单,传输光损耗小,并且具有较强的消逝场的特性开始进入人们视野,且这些特性被广泛运用进光纤传感器件中,而本论文中即利用微纳光纤具有较强消逝场特性使其与微球耦合来制备光纤微球谐振腔,光纤微球谐振腔的WGM的微球腔在各类实验中展现出其所具有的高品质因数Q和高灵敏等特性,并且WGM具有超高Q值的同时具有微小的模式体积正在被广泛运用到各类光学集成器件中,且由于球形腔WGM对于外界环境的微小变化十分敏感,如压力的变化等就会带来内部光场的剧烈的变化这一特性,将球形腔成功制成各类高灵敏度的传感装置,主要应用方向有温度传感,理学传感,及生物特异性传感。
传感器是获取我们周围环境的定量信息的工具,传感器响应任何给定的参数是取决于传感器的物理性质,微纳尺度的传感器能显示出令人印象深刻的敏感性,因此,这些传感器正处于不断的发展趋势中,而光学微纳传感器,利用光学的性质,同时由于它们的反应速度,灵活性,低成本等优点在现代社会中广泛普及。光学微腔是一种尺寸很小的光学谐振腔,尺寸在微米尺度,它利用光在折射率不连续的界面上的全反射、散射、反射或者衍射等效应,将光限制在一个十分微小的区域。利用这一原理实现了高性能的光学传感器,如果微腔几何属性或者材料属性发生变化,例如通过受力变形或加热空腔,可以检测到谐振参数的变化。因此光学微型谐振器可以用于众多的检测任务。
课题毕业论文、开题报告、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。