论文总字数:33626字
摘 要
近年来,随着社会能源消费总量的比重不断地提高,世界各国逐步重视建筑物中可再生能源的利用。而太阳能以其极大的天然以及技术优势占据了较为广泛的市场,人们将太阳能的应用集成在建筑物外围护结构上,即使用太阳能发电,提供室内所需电力。然而光伏发电仍然会受到温度等外界因素的影响而导致发电效率低下、发电成本较高等问题。因此,针对当前存在的问题,本文基于自然通风原理,提出了空气夹层内自然通风数学模型及其计算方法,以光伏板与屋面间的空气夹层作为研究对象,探究由光伏板、屋面以及两者间的空气夹层构成的空气夹层系统中自然通风对于系统温度特性和流动特性的影响。
本文基于自然通风原理提出了空气夹层内自然通风数学模型及其计算方法,并依据此数学模型设计并搭建空气夹层系统自然通风实验平台,研究自然通风对空气夹层系统的温度特性以及流动特性的影响,并利用实验验证数学模型的正确性。研究表明,若不考虑自然通风,则处于光伏阵列内部的光伏模块在工作时的温度会超过太阳辐射所产生的高温,光伏板发电效率降低2%-4%;在考虑自然通风的情况下,不同安装倾角与间距下光伏板背部平均温度不同,光伏板工作温度总体降低,且光伏板背部温度分布规律为沿空气流动方向先升高再降低,温度变化曲线不关于中心线对称而向出口方向偏移。通过对实验测量数据与利用数学模型编程所得数据的对比,发现两组数据结论具有很强的一致性,图线变化规律相同,趋势一致,从而验证了数学模型的正确性。
本文基于经验证的数学模型及其计算方法,详细分析了空气夹层几何形状、太阳辐射量以及室外环境条件三方面因素对于系统通风量和出口处空气温度的影响,总结在不同安装倾角和安装间距下的变化规律。通风量与空气夹层中空气温升呈耦合关系。利用该数学模型可计算出任意情况下系统的通风量和出口温度数值,根据数学模型计算方法中的能量守恒定律,即可计算任意情况下光伏板背板平均温度和发电效率,从而根据实际情况对光伏板安装距离和安装倾角进行优化。
关键词:自然通风,数学模型,空气夹层系统,通风量
Abstract
In recent years, as the proportion of total energy consumption in society has continuously increased, countries all over the world have gradually paid attention to the use of renewable energy in buildings. Solar energy, with its great natural and technological advantages, occupies a relatively large market. People integrate solar energy applications into the building's external protective structure, that is, use solar power to provide electricity for indoor use. However, photovoltaic power generation is still affected by external factors such as temperature, resulting in low power generation efficiency and high power generation costs. Therefore, aiming at the current problems, based on the principle of natural ventilation, this paper proposes a mathematical model of natural ventilation in air layer system and its calculation method. The air layer between photovoltaic panels and roof is taken as the research object, and the effect of natural ventilation on the temperature characteristics and flow characteristics of the air layer system consisting of photovoltaic panels, roofing, and air layer between the two is explored.
Based on the principle of natural ventilation, this paper proposes a mathematical model and its calculation method for natural ventilation in air layer system. Based on this mathematical model, a natural ventilation experimental platform for the air layer system is designed and built to study the influence of natural ventilation on the temperature characteristics and flow characteristics of the air layer system, and use the experiment to verify the correctness of the mathematical model. Studies have shown that if natural ventilation is not taken into account, the temperature of photovoltaic modules inside the PV array during operation will exceed the high temperature generated by solar radiation, and the photovoltaic panel power generation efficiency will be reduced by 2%-4%; In the case of ventilation, the average temperature at the back of the photovoltaic panel at different installation inclinations and distances is different. The overall change trend of the operating temperature of the photovoltaic panel is reduced, and the temperature distribution on the back of the photovoltaic panel is first increased and then decreased along the air flow direction, and the temperature change curve is not symmetrical about the center line and is offset toward the exit direction. Through comparative analysis of experimental measurement data and mathematical model data, it is found that the two sets of data have strong consistency, the same pattern of line changes, the same trend, thus verifying the accuracy of the mathematical model and the rationality of the experimental data.
Based on the validated mathematical model and its calculation method, this paper analyzes in detail the effects of air layer’s geometry, solar radiation, and outdoor environmental conditions on system ventilation and air temperature at the exit, and summarizes the law of changes in different conditions. The ventilation flow is coupled with the rise of air temperature in the air layer. Using this mathematical model, the ventilation and outlet temperature values of the system can be calculated under any circumstances. According to the law of conservation of energy in the mathematical model calculation method, the average temperature and power generation efficiency of the photovoltaic panel backboard under arbitrary conditions can be calculated. According to the actual situation, the installation distance and installation inclination of the photovoltaic panels can be optimized.
Keywords: natural ventilation; mathematical model; air layer system; ventilation flow
目 录
摘 要 I
Abstract II
第一章 绪论 1
1.1太阳能 1
1.1.1太阳能利用的背景 1
1.1.2太阳能光伏产业发展 1
1.2空气夹层在建筑外围护结构中的应用 2
1.2.1墙—太阳能烟囱模型 3
1.2.2屋面—太阳能烟囱模型 5
1.3选题背景意义及主要研究内容 7
1.3.1选题背景及意义 7
1.3.2主要研究内容 7
第二章 空气夹层内自然通风数学模型设计 9
2.1自然通风原理 9
2.1.1热压作用下的自然通风 9
2.1.2风压作用下的自然通风 10
2.1.3风压、热压共同作用下的自然通风 10
2.2自然通风的应用方法 11
2.3建立空气夹层内自然通风数学模型 12
2.3.1建立数学模型 12
2.3.2模型计算方法 12
2.4 本章小结 13
第三章 空气夹层系统自然通风实验台设计 14
3.1实验台设计思想 14
3.2实验可行性分析 14
3.2.1实验环境分析及确定 14
3.2.2空气夹层系统构建分析 14
3.3空气夹层系统自然通风实验台设计 14
3.3.1设备和仪器选择 14
3.3.2空气夹层系统自然通风实验台 18
3.4本章小结 18
第四章 自然通风对光伏组件及屋面温度影响模拟实验 19
4.1实验方案 19
4.2实验数据处理 19
4.3空气夹层中自然通风对于光伏组件及屋面的影响 21
4.3.1无风情况 21
4.3.2考虑通风影响 22
剩余内容已隐藏,请支付后下载全文,论文总字数:33626字
该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;