论文总字数:100591字
摘 要
近些年来,随着桥梁理论的不断发展,悬索桥作为一种大跨桥梁的基本体系收到了越来越多人的关注和研究,也给悬索桥理论带来了长足的发展,而在悬索桥中,空间缆索体系悬索桥作为一种新的体系,在抵抗横桥向荷载,抗风等性能上有着较强的表现,成为悬索桥体系发展的一个新的方向。而目前,相关空间缆索体系的研究还不够全面,在相关的线形计算中仍没有一套成型的计算理论,目前急需提出一套空间缆索体系悬索桥的计算理论。本文基于该情况,运用了解析力学法,对现有的空间主缆悬索桥的成桥状态线形和空缆状态线形以及相关吊杆的位置及角度修正计算进行推导。具体内容如下:
(1)对空间主缆悬索桥的具体线形进行了相关假设以及推导。成桥状态下,由于空间体系中倾斜吊杆所产生的横桥向水平力,主缆产生侧向弯折,此时在平面主缆悬索桥的理论体系基础下,通过假设每端吊杆之间的主缆为竖直平面下的悬链线,进一步拓展平面体系下的分段悬链线法的具体算法,需要考虑每个悬链线所在竖直平面与初始平面的夹角,并将此作为未知数代入相关方程中求解,结合平面分段悬链线法求解相关未知数,完成成桥线形的求解。
(2)在空缆状态下,由于没有吊杆力的横向水平力作用,整个空缆线形与平面索系所呈现的状态一致,此时只需考虑索鞍处的设计以及整体的无应力长度计算,其余计算与平面缆索体系相同。
(3)在完成成桥状态与空缆状态的求解后,本文还进行了吊杆位置及角度修正的推导,其中,位置修正与平面缆索体系相类似,而角度修正则为本文的难点,一方面是造成截面扭转的弯矩的计算--通过吊杆和重力对不同主缆截面所造成的扭矩与主缆扭转的扭矩相抵消来求取扭矩;另一方面是主缆扭转刚度的考虑,由于主缆是由离散的钢丝束组成,其扭转角与扭矩并不是线形关系,在考虑扭转刚度的时候需要采用一定方法进行简化,最终根据主缆截面转角及成桥状态下确定的吊杆的倾斜角度来得出吊杆锚夹的安装修正角度。
(4)以某空间缆索悬索桥为具体算例,列表计算了相关的参数以及详细的数值,证实了本文所推导的线形计算理论的可行性。
关键词:空间缆索悬索桥,成桥线形,空缆线形,主缆扭转,锚夹安装位置,吊杆初始安装角度,索鞍鞍槽线形
Abstract
In recent years, with the development of the bridge theory, suspension bridge have received more and more people's attention and research as a basic system of long-span Bridges, and it also brings development to the theory of suspension Bridges. The spatial cable system, shows strong resistance to resistance to cross-bridge loads as a new system of suspension Bridges, wind resistance, etc. and it have become a new development direction of the suspension system. However, at present, the related space cable system research is not comprehensive. In the linear theory of computation related calculations still do not have a molding, at present. It is do important to put forward a computational theory of Spatial Cable System. Based on this situation, this article consider the analytic mechanics method to deduce the existing cable state alignment of the finished main cable shape and the cable state alignment of the empty cable, as well as the position and Angle correction calculation of related suspenders. The details are as follows:
(1) Relevant assumptions and derivation are made for the specific alignment of spatial cable suspension bridge. At the finished main cable shape, the main cable is laterally bent due to the horizontal force of the transverse bridge generated by the inclined hangers in the spatial cable system. Based on the system theory of the main cable suspension bridge, we further expand the segmental catenary method under the condition of plane system specific algorithm by assuming main cable between each end of the boom as the vertical plane of the catenary. It is necessary to consider the angle between the vertical plane of each catenary and the initial plane, and substitute this as an unknown number into the correlation equation. Combining the plane segmentation catenary method to solve the related unknowns, the solution of the finished main cable shape is completed.
(2) In the state of empty cable, the shape of the entire empty cable is consistent with the state presented by the plane cable system due to the absence of the transverse horizontal force of the hanger rod force. At this time, only the design of the cable saddle and the calculation of the overall unstressed length need to be considered. The rest calculations are the same as the plane cable system.
(3) After the solution of the free cable condition , this article also deduces the position and angle correction of the hanger. Among them, the position correction is similar to the plane cable system, and the angle correction is the most difficulty part of this article. On the one hand, the calculation of the bending moment that causes the torsion of the section--the torque caused by the suspension of the main cable section by the boom and gravity is offset by the torque of the main cable to obtain the torque; On the other hand, considering the torsional stiffness of the main cable, since the main cable is composed of discrete wire bundles, the torsion angle and the torque are not linear, and a certain method is needed to simplify the torsional stiffness. Finally, according to the angle of the main cable section and the inclination angle of the boom determined in the state of the bridge, the installation angle of the boom anchor is obtained.
(4) Taking a Spatial cable suspension bridge as a specific example, the relevant parameters and detailed values are calculated in the list, which confirms the feasibility of the linear calculation theory deduced in this article.
KEY WORDS: Spatial cable suspension bridge, Finished main cable shape, Main cable twist, Anchor clamp installation position, Initial installation angle of the hangers, Cable saddle groove line shape.
目 录
摘 要 Ⅰ
Abstract Ⅱ
第一章 绪论 1
1.1 空间缆索悬索桥简介 1
1.2 空间缆索悬索桥相关计算理论 1
1.3 仍待解决的问题 3
1.4 本文研究内容 5
第二章 空间缆索体系成桥状态计算 6
2.1 吊杆力计算 6
2.2 成桥状态主跨主缆线形计算 7
2.2.1 主跨成桥线形计算(索鞍参数已知) 8
2.2.2 主跨成桥线形计算(索鞍参数未知) 14
2.2.3 吊杆无应力长度计算 17
2.2.4 主缆无应力长度计算 18
2.3 边跨成桥线形计算 19
2.3.1 边跨主缆成桥线形计算(索鞍参数已知) 19
2.3.2 边跨主缆成桥线形计算(索鞍参数未知) 21
2.3.3 边跨主缆成桥状态无应力长度计算 22
2.4 成桥状态索鞍线形计算 22
2.4.1 索鞍线形计算 22
2.4.2 索鞍主缆无应力长度计算 28
2.5 桥塔预抬高量设计 30
2.6 本章小结 31
第三章 空缆缆索体系空缆状态计算 32
3.1 空缆线形计算的相关未知数 32
3.2 空缆线形计算的相关方程 32
3.2.1 主跨相关参数 34
3.2.2 左边跨相关参数 39
3.2.3 右边跨相关参数 41
3.3相关方程联立求解 43
3.4 本章小结 43
第四章 吊杆索夹安装位置计算 44
4.1 吊杆索夹纵向安装位置计算 44
4.2 吊杆索夹安装角度计算 46
4.2.1 主缆扭矩计算 46
4.2.2 主缆锚夹安装角度计算 51
剩余内容已隐藏,请支付后下载全文,论文总字数:100591字
该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找;